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* 1. PROJECT ABSTRACT

In this project, we developed accurate and approximate methods for

calculating cross sections of elementary reactions. These methods were

* applied to systems of importance for the fundamental aspects of chemical

dynamics and for advanced technologies of interest to the United States

Air Force. The applications included calculations of three-atom exchange

* reactions, break-up and three-body recombination collisions and vibrational

quenching by reaction. These calculations improved our understanding of such

processes and permitted an assessment of some approximate methods.
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2. HYPERSPHERICAL COORDINATES IN COLLINEAR ATOM-DIATOMIC COLLISIONS

Prior to our development, as part of this project, of the hyperspherical

coordinate method for performing accurate quantum mechanical calculations of

collinear atom-diatom reactions, a variety of other methods had been invented

While those methods had been successful in studying a number of interesting

systems, they could not be used for two important classes of reactions: those

in which a light atom is transferred between two heavy ones, and those above

the threshold for collision-induced dissociation.

The method of hyperspherical coordiantes we developed was applied to a

variety of systems of this and other types, and compared in several instances

to the results of quasi-classical trajectory calculations. The results of

these calculations and their significance is described in a series of nine papers.

Four of these have been published recently and the other five are in draft

stage, being readied for publication. Reprints or preprints of all nine

are included in section 8 , at the end of this report. We summarize here,

very succinctly, these results.

2.1 Hyperspherical Coordinates in Quantum Mechanical Collinear Reactive

Scattering. In this paper we describe the methods and the results of its

first application. The system chosen was H + H2, and the calculations are

shown to be in excellent agreement with results obtained previously by other

methoas. They were extended to energies significantly higher than in the past,

and dynamic quantum resonance effects were shown to persist to high energies ,

and high vibrational states. In addition to being accurate, the method was

shown to be more efficient than previous ones.

2.2 Collinear Quantum Mechancial Probabilities for the I + HI - IH + I

Reaction Using Hyperspherical Coordinates. In this paper, the exchange of a

H atom between two I atoms is considered. This is an extreme case of a

g.
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heavy-light-heavy mass combination, for which no other method has produced

* satisfactory results. We show that in spite of the small skew angle ("-7*) -

in this system, the hyperspherical coordinate approach is very efficient

and leads to accurate results. The resulting reaction probabilities show

* an oscillatory dependence on the energy, which is qualitatively reproduced 0 r

by corresponding quasi-classical trajectory calculations. In addition,

they desplay resonance behavior, which depends very strongly on the details

* of the potential energy surface in the strong interaction region, and which

can be modeled by a vibrationally adiabatic description.

2.3 Quantum Mechanical Coupled-Channel Collision- Induced Dissociation

6Calculations with Hyperspherical Coordinates. In this paper we indicate how

accurate collision-induced probabilities can be calculated in competition

with exchange reactions, using hyperspherical coordinates. The method is

* applied to a simple system, and shows rapid convergence properties. These

probabilities are strongly enhanced by vibrationally exciting the reagent,

and their dependence on collision energy is mimicked rather well by quasi-

* classical trajectory calculations.

2.4 Mass Effect in Quantum Mechanical Collision-Induced Dissociation

in Collinear Reactive Atom-Diatomic Molecule Collisions, I, Symmetric

Systems. The calculations of the previous paper are extended to a variety .0

of mass combinations, including heavy-light-heavy, light-heavy-light and light-

light-light systems. Collision-induced dissociation is shown to be greatest

*• in the light-heavy-light system and least in the heavy-light-heavy one. Rate

constants for collision-induced-dissociation and for the competing exchange

reaction channel are given and their temperature dependence is examined,

2.5 Collinear Quasi-Classical Trajectory Study of Collision-Induced .

Dissociation on a Model Potential Energy Sruface. These quasi-classical

k.
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studies include the calculation of the partitioning of the energy of the system -

among the three atomic fragments, for subsequent comparison (see paper 2.6)

with the corresponding quantum results. We report the formation of well

defined reactivity bands for collision-induced dissociation and show that the

absence Qf such a process at low collision energy for ground state reagent is

correlated with the absence of the simplest kind of dissociative trajectory,

which occurs when the reagent is vibrationally excited. The observed reactivity

bands explain some interesting features of the final kinetic energy

distribution functions.

2.6 Partitioning of Kinetic Energy Among Reaction Products in

Collision-Induced Dissociation in Collinear Atom-Diatomic Molecule Collisions

from Quantum and Classical Mechanical Calculations. The method for calculating

the distribution of the kinetic energy among the dissociation fragments using

quantum mechanics is presented and applied to the same system considered above

(paper 2.5). By microscopic reversibility these formulas are easily applied

to three-body recombination processes. These distributions have a much less

irregular structure than the quasi-classical ones.

2.7 Quasi-Classical Trajectory Analysis of Reactive and Non-reactive

Deactivation in the Collinear Cl + HCl System. We performed quantum cal- .- O_

culatinns which show that there is near equivalence of the probabilities

and rates of reactive and non-reactivedeactivating processes in collisions of

vibrationally excited HCl. This near equivalence is interpreted using quasi- ,

classical trajectories for this system. We find that most vibrational deacti-

vation occurs near the boundary between regions of reactive and non-reactive

* trajectories in the final action versus initial vibrational phase plots. -.

The trajectories involved in these highly non-adiabatic collisions more or
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* less follow the symmetric stretch line for a period of time. We believe that

this equivalence between reactive and non-reactive deactivating processes will

be a feature of any symmetric heavy-light-heavy system.

0 2.8 Collinear Quantum Mechanical Probabilities and Rate Constants for 0

the Sr + HCl (v=2,3,4) Reaction Using Hyperspherical Coordinates. We find that

removal of HCl(v) occurs mainly by the reactive channel,leading to the nearly

* degenerate HBr (v-2) state. The probabilities of multi-quantum transitions

in non-reactive collisions and of reactive transitions to all but the near-

degenerate HBr level are low, and the probabilities of reactive and non-reactive

transitions to near-degenerate final states are nearly equal. These results

can be understood on the basis of classical trajectories, in analogy to the

discussion in paper 2.7.

* 2.9 Hyperspherical Coordinates in Collinear Atom-Diatomic Molecule

Collisions: Convergence Properties. In this paper we present a study of the

convergence properties of the hyperspherical coordinate method. In par-

0 ticular, state-to-state reaction probabilities and the phases of scattering

matrix elements are examined as a function of the number of basis functions

and the distance at which the wve function is projected from a hyperspherical

coordinate basis onto a cartesian coordinate one, prior to the asymptotic O

analysis. The probabilities and phases are found to converge very rapidly

with the size of the basis set, making this a computationally efficient method.
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In addition to the results reported in these nine papers, we have

initiated computational studies of the hyperspherical coordinate method

using a diabatic basis function as opposed to the step-wise diabatic repre-

sentation used in the calculations reported so far. We have also initiated

a calculation of streamlines from the hyperspherical coordinate scattering

wave functions. These studies are continuing and will be reported at a

later time.

* .
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3. COLLINEAR QUANTUM MECHANICAL STUDY OF THE REACTIONS H + FH, D + FH AND H + FD
* 9

In this section we present the results of quantum-mechanical coupled-

channel calculations for the collinear systems

* H' + FH(v) - H'F (v') + H , H' + FH(v')

D + FH(v) DF(v') + H, D + FH(v')

* H + FD(v) - HF(v') + D, H 4. FD(v')

Detailed knowledge of the kinetics and dynamics of the HF/DF laser syste

important if one is to successfully understand, model and improve its cperation,

and the studies performed, in addition to their fundamental interest, were

aimed at shedding some light on this kinetics.

Enclosed at the end of this report are drafts of three papers on this

topic, in near final form, being prepared for publication. A brief summary

is given here.

3.1 Quantum mechanical collinear calculation of the reactionsS
D + FH(v = 0 - 2) - DF(v') + H and H + FD(v = 0 - 3) - HF(v') + 0 on a

realistic potential energy surface. This paper examines these exchanae

reactions on a potential energy surface having a realistic barrier of

40 kcal/mole. Particular attention is focused on the effectiveness of recent

vibrational excitation in promoting these reactions. It is shown that the

decrease in their activation energies is less than the added vibrational

energy. Many aspects of their dynamics can be understood in terms of a one-

dimensional vibrationally adiabatic model.

l0
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3.2 Collinear quantum mechanical calculations on the systems

HF(v) + H and HF(v) + D on a realistic potential energy surface. In this --4

paper we present results for reactive and non-reactive processes on the

40 kcal/mole barrier surface of the previous paper. A wide variety of

dynamical properties of these systems, including state-to-state transition

probabilities, activation energies and reaction product state distributions

were calculated. Non-reactive processes were found to be the predominant

ones, and the corresponding dynamics are understandable in terms of a simple

Landau-Teller model of vibrational-to-translational energy transfer.

3.3 Barrier height dependence of dynamics in the collinear H + FH(v)

and D + FH(v) systems. In this paper we present the results for reactive

and non-reactive processes on six different potential energy surfaces which

have barrier heights to exchange in the range of 1.5 to 40 kcal/mole. We

analyse the effect of barrier height on the following dynamic properties:

the rates and mechanisms of vibrational deactivation, the effect of reagent

vibrational excitation on reaction probability and product state vibrational

distribution and the importance of dynamical resonances.

•..
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4. SYMMETRIZED HYPERSPHERICAL COORDINATES FOR THREE-DIMENSIONAL QUANTUM

* MECHANICAL REACTIVE SCATTERING CALCULATIONS

This is an extension, to three dimensions (3D) of the method used

successfully for collinear systems described in Section 2. In the collinear

* case, hyperspherical coordinates have permitted the study of heavy-light-

heavy systems and of collision-induced dissociation, not possible by other

methods, and has been a much more computationally effective method for other

• reactive scattering calculations which can be studied by alternative methods.

It is expected that the extended 3D method will display equivalent advantages.

To describe the progress achieved in this extension, let us summarize the

method.

Given a system of N particles, it is possible to define in the internal

configuration space of dimensions 3(N-l) a hyper-radius p and a set of 3N-4

* hyperangles nl, ... , "3N-4 in terms of which the hamiltonian of the system can

be written as

^ 13N-4
* - ,~ ~H(Pn) p  +  2+ V(p, )

p 3 211p2

where P is an overall reduced mass for the system and L2 is a generalized

angular momentum operator which depends on the set (nl ... , 3N_4) of

hyperangl es.

The 3(N-l)-dimensional nuclear motion Schrddinger equation for an

N-atom electronically adiabatic system can be written in these coordinates as

H(p,x) (p, ) = E£(p,k)

rA0



-10-

In order to solve it, we define a surface hamiltonian h(p;k) by the expression

* 0

h(p;k) = + V(P
2up

This is the portion of H obtained by "freezing" p. The surface hamiltonian .0

contains differential operators in the hyperangles k, but not in the hyper-

radius p, which therefore appears only parametrically. We define the local

surface eigenfunction 0 (k;p) by the equation

h(n;p) n(;P) = En(P) * (k;p)

where On(;p) is required to be regular everywhere on the p = constant hyper-
AU

sphere. The symbol n denotes a collection of quantum numbers needed to

uniquely specify 0" The quantities e (p) are the corresponding surface

eigenvalues, and the curves of E versus p are the generalization to polyatomic

systems of the Bron-Oppenheimer potential energy functions for diatomic

molecules. For any finite value of p, no matter how large, the n(k;p) form

an infinite discrete complete orthonormal basis set in the hyperangles k. As

p , these surface eigenfunctions correlate with the sets of atoms or

molecules into shich the N-atom system can be partitioned, i.e., the several

possible arrangement channels for the system. We can, as a result of these

considerations, expand the unknown wave function p (p, ) in the surface function

basis set pn everywhere in configuration space. The coefficients of this

expansion will depend on the single variable p, and will satisfy a set of

coupled ordinary differential equations in this variable.

To partially decouplethese equations and decrease the numerical effort

in their solution, it is convenient to adopt a partial wave expansion. Let

*.O0
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32 and Jz be the total system angular momentum operator (excluding spin) and

its component along a laboratory-fixed z-direction. We first expand i(p,p)

in the simultaneous eigenfunctions (JM of Hj and J where J(J+l)K 2

and MM are the eigenvalues of the last two operators, respectively. The
.JM(0

surface functions U (;p) are then defined as simultaneous eigenfunctions of

J(;p), J and and the (pr) is expanded in the Either

body- or space-fixed coordinates can be used to define the angles .

Let us consider a triatomic system A + BC, in which a is the position

vector of A with respect to the center of mass of BC and , is the position

vector of C with respect to B. Let e C? the polar angles of ) in a lab-

oratory-fixed frame and ya, IP the polar angles of a in a body-fixed frame

whose z axis is along . In this case, the body-fixed hyperangles are:

where wa is an angle between 0 and I defined by
r,

tan-  a

R PABC 'A,
R'' ( - A B c  ) R~

CL "BC

kr= 
) r

VIA,BC

The hyper-radius is then defined by

p = (R 2 + r 2 )

The 6 hyperspherical variables p, w , 8 a' span the 6D configuration

space of the problem. The total angular momentum operator depends only on

e9 L whereas the potential function only on p, W , y . It is now

• ° .
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convenient to expand ip and 0 according to

J"

where the D are Wigner rotation functions. In order to determine the surface '.

functions icinM On ;p) it suffices to determine the coeffici n € (w0,,;o)"'T:

-

.-,

wher e sh ll D i surface functions. They satisfy coupled equations ofac

the type

QJJ~-l in 3C i cJ'2+l
a~aI ( ;= ' + (Wa- +IJ ( y;p) (Y +W9PJO

Q -1(y~w".) n'M aQ +1 (a; p a )

= (P) 0 J

* where X and J are appropriate differential operators. Once these 2D

eigenfunctions 0J (wy,;p) and the corresponding eigenvalues E (p) are obtained,

we expand the 3D functions (p,w,y ) and obtain for each J a second order

matrix differential equation for the coefficients of this expansion in the

only remaining variable p. From their solution, we obtain the scattering

matrices J and the differential and integral cross sections for the collision

-0process being considered.

So far, all of the steps of this computational scheme have been pro-

grammed for the H + H2 reaction and the J=O partial wave. In view of the

C3v permutation symmetry of this system, further decouplings are permitted '

by considering the solutions of class A, A2 and E separately. The results

29O
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obtained to date are as follows:

a. Two independent methods for obtaining the surface functions were

developed, checked against each other, and shown to give the same

* results. 0

b. The coupled differential equations in p were solved for each of the

classes A1 , A2 and E and the corresponding scattering matrices

*9 were calculated,

c. From a calculation for this system, done some years ago in this

laboratory by an entirely independent "matching" method, the same

4W symmetry-specific scattering matrices were calculated.

d. The results of the "hyperspherical" and the "matching" methods were

compared. They gave equivalent absolute values for the scattering

0 matrix elements but different phases. Since these phases affect

the values of the cross sections, we are currently tracking down

the source of this difference. Once it is found, the J=O program

* will be considered operational. The only remaining step will be

the generalization of the program for J 0 0, which is fairly

straightforward.

In spite of the large amount of effort involved in implementing this

3D reactive scattering procedure, all the indications so far are that it will

lead to a significant improvement in efficiency over alternate accurate com-* S
putational methods and permit applications to other reactive systems

such as the important Cl + H2 , F + H2 ones.

F *
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5. THREE-DIMENSIONAL QUANTUM MECHANICAL REACTIVE SCATTERING BY THE MATCHING
* 0

METHOD

We have previously developed a method for performing accurate three-

dimensional reactive scattering calculations for triatomic systems. Let the
0

three atoms be A, B, and C. The method consists of integrating the Schrddinger

equations, starting out independently from the 3 separate arrangement channel

regions A + BC, B + AC and C + AB and proceeding into the strong interaction

region in which A, B, and C are all close to one another. These three solutions

are then linearly combined to match one another smoothly. Thts method was

applied to the H + H2 system, yielding the only accurate 3D reactive differ-

ential cross sections published so far [A. Kuppermann and G. C. Schatz, J.

Chem. Phys. 62, 2502 (1975); G. C. Schatz and A. Kuppermann, ibid, 4642 (1976)].

The computer program, originally written for systems composed of three identi-

cal atoms, was then modified to permit calculations for systems of the type

A2B, in which only two of the three;atoms are required to be identical. These

include H2D, H2 F and H2Cl. Because of the complexity of the original program,

and its extensive utilization of symmetry properties for purposes of maximum

computational efficiencty, these changes are rather subtle and pervasive. This

modified code was extensively tested during the course of this project by using

it to perform calculations of the H + H2 system, for which accurate results using

the original code are available. These two codes yielded the same answers.

We then proceeded to perform extensive convergence calculations for the H2D

system at total angular momentum J equal to zero. The results of these studies

indicated an erratic behavior with respect to the number of channels used in

the coupled-channel expansions and other numerical parameters. This behavior

was very difficult to rationalize. After appreciable effort, it was traced to
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an accidental interchange in the program between the masses of atoms A and B.

When applied to the H3 system, this error went, of course, undetected. Once

it was identified and corrected, the J=O results for DH2 showed the same

degree of convergence and accuracy as the H3 ones. Equivalent studies were then
"0

initiated for the J>O case and are being continued. This program is expected

to yield the first accurate 3D information on isotope effects for reaction cross

sections on highly quantum systems. These results will permit a very careful

test of isotope effect theories for state-to-state cross sections, which will

be useful for related systems such as H2 F and H2CI. They should also permit

a test of the accuracy of other approximate methods, such as several angular

momentum decoupling schemes and distorted wave approximations, which are

applicable in principle to more complex systems.

V *,.0
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* 6. METHODS FOR QUANTUM MECHANICAL REACTIVE SCATTERING '

A chapter for a book, describing the methodology and results of the

past reactive scattering calculations performed in our group (excluding the

• hyperspherical coordinate method) was written [A. Kuppermann, in: Theoretical

Chemistry: Advances and Perspectives, Volume 6A, 0. Henderson, Ed. (Academic

Press, New York, 1981), Chap. 2, pp. 79-164] and a reprint is included in

section 8,

(V0
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7. PROFESSIONAL PERSONNEL

During the period covered by the present report, the following per-

sonnel were associated with work of the project.

1. Aron Kuppermann, principal investigator.

2. Dr. Joseph K. C. Wong, three-dimensional reactive scattering using

hyperspherical coordinates. Dr. Wong continues to work on this

project part-time.

3. Dr. Nancy M. Harvey, three dimensional reactive scattering by the

matching method.

4. Dr. Jack A. Kaye, collinear reactive scattering. Dr. Kaye finished

his doctoral work in December 1981 and has since been a post-

doctoral research fellow at the Naval Research Laboratory in

Washington, D.C.

5. Diane Hood Ng, three-dimensional scattering using hyperspherical

coordinates. Ms. Ng is a graduate student and should obtain her

Ph.D. degree some time during 1984.

6. Paul G. Hipes, collinear reactive scattering using hyperspherical

coordinates. Mr. Hipes is a graduate student who joined the group

in the fall of 1981.

7. James F. Garvey, collinear reactive scattering. Mr. Garvey is

mainly an experimentalist, but did some theoretical work in

collaboration with Dr. Kaye.

b4



-18- -

8. REPRINTS AND PREPRINTS -O

Enclosed are reprints or preprints of 14 papers written during the

course of this project, as follows:

1. Hyperspherical Coordinates in Quantum Mechanical Collinear Reactive

Scattering, A. Kuppermann, J. A. Kaye and J. P. Dwyer, Chem. Phys. Lett. 74,

257 (1980).

2. Collinear Quantum Mechanical Probabilities for the I + HI- IH + I

Reaction Using Hyperspherical Coordinates, J. A. Kaye, and A. Kuppermann,

Chem. Phys. Lett., 77, 573 (1981).

3. Quantum Mechanical Coupled-Channel Collision-Induced Dissociation .i

Calculations with Hyperspherical Coordinates, J. A. Kaye and A. Kuppermann,

Chem. Phys. Lett., 78, 546 (1981).

* 4. Mass Effect in Quantum Mechanical Collision-Induced Dissociation

in Collinear Reactive Atom-Diatomic Molecule Collisions. I. Symmetric

Systems, J. A. Kaye and A. Kuppermann, draft preprint.

5. Collinear Quasi-Classical Trajectory Study of Collision-Induced ..

Dissociation on a Model Potential Energy Surface, J. A. Kaye and A. Kuppermann,

draft preprint.

6. Partitioning of Kinetic Energy Among Reaction Products in Collision-

Induced Dissociation in Collinear Atom-Diatomic Molecule Collisions from Quantum

and Classical Mechanical Calculations, J. A. Kaye and A. Kuppermann, draft

preprint.

7. Quasi-Classical Trajectory Analysis of the Equivalence of Reactive

and Non-Reactive Deactivation in the Collinear Cl' + HCl System, J. A. Kaye

and A. Kuppermann, draft preprint. 'o

:1
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8. Collinear Quantum Mechanical Probabilities and Rate Constants 0

for the Br + HC1 (v=2,3,4) Reaction Using Hyperspherical Coordinates,

J. A. Kaye and A. Kuppermann, Chem. Phys. Lett., 92, 574 (1982).

9. Hyperspherical Coordinates in Collinear Atom-Diatomic Molecular

Collisions: Convergence Properties, J. A. Kaye and A. Kuppermann, draft

preprint.

10. Quantum Mechanical Collinear Calculation of the Reactions 0 + FH

(v= O,1,2)+DF (v') + H and H + FD (v=0,l,2,3)- HF (v') + D on a Realistic

Potiential Energy Surface, J. A. Kaye and A. Kuppermann, draft preprint.

11. Collinear Quantum Mechanical Calculations on the Systems HF (v)

+ H and HF (v) + D on a Realistic Potential Energy Surface, J. A. Kaye and A.

Kuppermann, draft preprint.

12. Barrier Height Dependence of Dynamics in the Collinear H + FH (v)

and D + FH (v) Systems, J. A. Kaye, J. P. Dwyer and A. Kuppermann, draft

preprint.

* 13. Accurate Quantum Calculation of Reactive Systmes, Aron Kuppermann,

in Theoretical Chemistry-Thoery of Scattering: Papers in Honor of Henry

Eyring, D. Henderson, Ed. (Academic Press, New York, 1981) Vol. 6, Part A.,

Chap. 2, pp. 79-164.

14. Few Body Molecular Collisions: Theoretical, A. Kuppermann, Nucl.

Phys. A, 353, 287c (1981).

In addition, a Ph. 0. Thesis by Jack A. Kaye was submitted and approved

in January 1982 entitled "Theoretical Studies of Chemical Reaction Dynamics",

containing a substantial amount of work supported by this project. It consists

of 817 typed pages and a copy is available on request if desired.
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8. INVITED SEMINARS, CONFERENCES AND LECTURES

During the three year period covered by this report, the principal

investigator gave the following invited seminars, conferences and lectures on
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7. "Few-Body Molecular Collisions: Theoretical". 9th International
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13. "Lifetimes of Dynamics Resonances". 15th Jerusalem Symposium in
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HYPERSPHERICAL COORDINATES IN QUANTUM MECHANICAL
COLLINEAR REACTIVE SCArIERING'

Aron KUPPERMANN, Jack A. KAYE ** and John P. DWYER *
Arthur Amos Noyes Laboratory of Chemical Physics . California Institute of Technology,
Pasadena. California 91125. USA

Received 29 April 1980

A new hyperspherical coordinate method for performing atom-diatom quantum mechanical collinear reactive scattering
calculations is described. The method is applicable at energies for which breakup channels are open. Comparison with
previous results and new results at high energies for H + H2 are given. The usefulness of this approach is discussed.

1. Introduction electronically adiabatic reactions of this type, although
the method described is also applicable, with straight-

Triatomic exchange reactions of the type A + BC forward generalizations, to electronically non-adiabatic
- AB + C, with A, B, and C representing atoms con- reactions.
fined to move on a laboratory-fixed straight line, The methods previously developed for studying
constitute the simplest reactive processes which present these collinear processes are restricted to energies

* a basic characteristic of many chemical reactions: the significantly below that for which the A + BC
dissolution of a chemical bond and the formation of A + B + C process is possible. Such breakup collisions,
a new one. The low mathematical dimensionality of particularly when occurring in competition with ex-
the corresponding theory permits a straightforward change processes, have been particularly resilient
analysis of this system, unencumbered by the mathe- to accurate quantum mechanical treatment [5]. In addi-
matical complexities of molecular rotations. Such a tion, accurate results for systems in which the central

* coilinear model is therefore useful for developing in- atom B is significantly lighter than the end atoms,
sight into the reaction process, especially for systems such as the I + HI - IlH + I reaction, have not been ob-
which are collinearly dominated, i.e., for which col- tained so far by those methods, for reasons inherent
linear configurations have energies considerably lower to their nature (see section 4). The use of hyperspheri-
than corresponding bent ones. For these reasons, col- cal coordinates, as described in the present paper,
linear reactions have been the subject of extensive was developed in an attempt to overcome these short-
theoretical studies over the last decade. Reviews of comings. Extension of these ideas to three dimensions
the methods developed for such studies have been was also kept in mind.
published previously [1 -41. We consider in this paper

This work wa% supported in part by a contract (No.
F49620-79-C-0187) from the Air Force Office of Scien- 2. Theory
tific Research.
Work performed in partial fulfilment of the requirements Let r', R' be, respectively, the BC internuclear dis-
fox the Ph.D. degree in Chemistry at the California In- tance and the distance of A to the center of mass GBC
stitute of Technology of the BC molecule. Let r' , R' be the corresponding

• Present address: School of Law, Boalt Hall, University of distances with the roles ofA and C interchanged, as
California. Berkeley, California 94720, USA.

* Contribution No. 6215. indicated in fig. 1. We define the Delves scaled co-
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A GAB 2 c C

L R' 6-

,4 A,
j I.

Fig. 1. Distance coordinates for collinear triatomic system. z -
0

. 3.0eV

ordinates [6,7] RA, r. QX =, -y) by 12.

R )R .=-I 2- 1.I2)1 . -Rx~ a R'X r a r , a,=(u , v/ptJ /4 .(1)._ . . . . . 0.3

In these equations, km is either aO-t or yj3a, 1. is the
reduced mass of m, and mi, MVK is the reduced mass 0
of mx and (m , + m,), and m., mo, and m are the 0 2 4 6

masses of A, B, and C, respectively. In terms of R., r, R /bohr
the relative nuclear motion hamiltonian of the tri- Fig. 2. Porter-Karplus potential energy surface V for the '
atomic system is H + H 2 system in Delves scaled coordinates Ra , r' The solid

curves arc equipotential contours at the total energies (with

+ a21respect to the bottom of the isolated H2 well) indicated in
H=- a a + V X (R,,rx), X -y,', (2) the lower right side of the figure. The dashed line is the

minimum energy path. The polar coordinates p, a of a general
point P in this R.. r. configuration space are also indicated.

where The three arcs of circles at p = 2.00, 3.13, and 6.00 bohr are C..

cuts along which V is displayed in fig. 3. The second of these
i = [m mMm'. /(m + + m.,),1/  (3) passes through the saddle point, indicated by a cross in the

figure.
is a reduced mass of the system and is the same whether
A = a or 7, and V.(Rx,r.) is the electronically adia-
batic potential energy surface being considered, in probability matrix P [ 1,2], and care is taken to ascer-

X coordinates. According to eq. (2), the internal col- tain their convergence with respect to the number of (. -
linear motion of the triatomic system is isomorphic terms used in this expansion. In the method develop-
with that of a single point P of mass .u in the two- ed by Light and co-workers [9j, x and)' have been
mathematical-dimensional (2MD) R., r\ configuration chosen to be natural collision coordinates, whereas in
space, subject to the potential V,\. The corresponding that of Kuppermann (2,101, they are r. and Ra for

* Porter-Karplus (PK) ground state collinear potential the reagent region of configuration space; the circular
energy surface for the H + H2 system [8] is depicted polar coordinates r and 4p (centered on a point P0
in fig. 2. deeply imbedded in the A + B + C dissociation plateau)

The coupled-equations approach to solving the for the strong interaction region; and r, and R., for A
Schr6dinger equation for the hamiltonian in eq. (2) the product region. In both these methods, the wave-
consists in choosing an "internal" variable x and a function is assumed to vanish outside a reaction
"propagation" variable y (transverse to x) which may gulley which excludes the dissociative regions of con-
be different in different regions of configuration figuration space.
space. The wavefunction 4i(r, y) is then expanded in In the present method, we use for r, y the circular
a quasi-complete discrete pseudo-vibrational basis set polar coordinates p, a (see fig. 2) around the origin 0
{n (x)} of variable x, and the resulting coupled equa- of the R., r\ configuration space (for which origin
tions in the coefficients gn(y) of this expansion are A, B, and C coincide). Similar coordinates have been
integrated. Enough linearly-independent solutions of previously used by Tang et al. to study a piece-wise
this type are obtained to permit the calculation of the flat potential energy surface system [1 ]. In the , -
R matrix, and from it the S matrix and the transition generalization to three-dimensional collisions [6,7,121
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p is a hyperdistance in a 6MD configuration space.
The range ofais 0  toamax = tan-(mM/mam )1/2 ,  , ]
where Mma + m + m. At the extremes of this A \ v v OV 0 ,

range (where B coincides with A or C, respectively)4-Xvrpp 0
the potential function V becomes, for all chemical
purposes, infinite and the wavefunction vanishes. The 12
nuclear motion hamiltonian in these coordinates is

12 a2 ]a 1 ( )
p ap 2 (4)

In fig. 3 we depict V as a function a for various 0 2 ....
constant values A of p for the PK surface. It can be a/degrees
seen that, because of the divergence of V at a = 0 and
a = amax, the eigenfunctions of Fig. 4. Potential energy function, eigenfunctions. and eigen-

values of the one-dimensional hamiltonian of eq. (5), for =
h(a; )= -(ht2 /2u,5 2 )a2I 2 + V(a, ) (5) 6 bohr. The double-well curve is the same as that in fig. 3. The -2

horizontal lines represent the eigenvalues for the quantum
form an infinite but discrete set {onja; ;} which numbers given (for every other eigenvalue) at the right of
samples the entire range of a, including those values the figure, for the even eigenfunctions (i.e., those which are
which, for large P, correspond to dissociated A + B + C symmetric for reflection through the a - 300 line). The latter
configurations. In fig. 4 we display the even (see end are the oscillatory curves around the eigenvalue lines, and
of this section) eigenfunctions for the PK surface, for have been scaled so as not to overlap each other. The cor-

6 bohr and n 0-24 (in steps of 2), as well as responding relative scaling factors are 1.00, 1.12, 1.08,
)S, 1.18, 1.28, 1.59.1.69, 1.45,1.18, 1.01, 0.90, and 0.87.

8 the corresponding eigenvalues En(5). The highest of

these is larger than the dissociation energy 4.75 eV
of H2. Since the H2 Morse curve included in the PK
surface supports 17 bound states, for large (larger

6 2 bohr than II bohr, it turns out), E£n0) exceeds 4.75 eV for

n > 32. The corresponding eigenfunctions sample the
dissociated plateau region of configuration space,

20 bohr which thereby, in principle, is made accessible to the
system. Whether or not the system samples that

6 bohr region depends on energetic and dynamic considera- .
tions, rather than it being excluded by a priori consi-

2- derations. Expanding an eigenfunction P" (p, a) of
H(p, a) according to

N
3.13 Dohr 1/'(p,a)=,- 2 i 4(p;)¢,(a:) (6)

.91_.__._n=0 S
OL 210 4 ,0 60 "==

a /degrees leads without much difficulty to the following dif-
ferential equation in the matrix g(p; A), whose n'th

Fig. 3. Potential energy function V(a, -) of fig. 2 as a func- row and nth column element is g,:
tion of a for the following four constant values of p: 2.00, d p1
3.13, 6.00, and 20.00 bohr. The first three of these values /2/u)d2'p; P)/dp 2 + W(P; ql(p; T)
correspond to the arcs displayed in fig. 2. The fourth one is 0
outside of that figure. E(p; P)g(p; 5). (7)
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W and E are interaction and energy matrices whose n' hyperspherical coordinate method just described,
row and n column elements are given by are given in fig. 5, together with those of previous

ni W (n calculations. We plot in fig. 5 the vibrationally
n0(p, ) IV(a, p) - (/ 2 /p 2 )V(a, )ln'), (8) adiabatic distinguishable-atom reaction probabilities
,; )[E+ 2 /8 2 - p! from the initial vibrational state n of the reagents

En'{o; ) L /81P n n (9)J"to.the same vibrational state of the reaction products.

where In') = ,.(a; T), the integration variable im- The points in fig. 5 are some of the present results,
plied in eq. (7) is a, E is the total energy of the system, which are converged and accurate to about 1% or
and 6" the Kronecker symbol. better. They have been carried out so far up to total

The reactive scattering problem is solved as follows, energies of 2.88 eV (about 60% of the H2 dissociation
We choose a set of pi (i 

= 0, 1 ... ,m )" In the range energy), without any signs of quality deterioration.
pi- I to p" we chose a Ai for which we calculate the The dashed lines are cubic spline fits to these results
On( a ; Ai) by a numerical method (such as a finite (which include a larger number of points than those
difference one [131 ). We then integrate numerically displayed) for total energies in excess of 1.75 eV for
the coupled equations (7) from pi-I to pi, setting the 0 and PR curves, and for Et, > 0 for the
v(O; Po) = 0 and g'(O; 0) = I and requiring continuity others. For comparison, the solid lines are cubic
of ',n (P, a) and of its derivative with respect to p at spline fits to the results of Schatz and Kuppermann
the boundaries p = pi between the pi-I to pi and pi [16], which were carried out using one of the previous
to pi- I regions. The integration method used in the methods (10], up to total energies of 1.75 eV for
present calculations was that of Gordon [14], to- P and 1. These latter results [16] are essentially
gether with the reorthogonalization procedure of indistinguishable from those of Diestler 117], who
Riley and Kuppermann [15]. In this manner we ob- performed accurate calculations on the same PK surface
tain the fn(p;a)for0a<max andpo (p (p at total energies up to 1.21 eV. For total energies for
We then project numerically these jn onto the boun]'" which other calculations are available ((1.75 eV), the
state eigenfunctions of BC and AB at a large and con- present results agree with the previous ones within the
stant value of RX, from which we get by standard computational accuracy of about 1%. This validates
methods [2] the R, S and P matrices defined above the hyperspherical coordinate method.
for energies below the A + B + C dissociation limit. An additional useful characteristic of this new cal-
Their convergence with respect to max, POPim culational procedure is that convergence with respect
and the number N of terms used in eq. (6) is estabtlish- to the number of basis functions used is more rapid
ed empirically, as is the symmetry of the open channel than for other methods. For example, for Et, in the
part of R and the unitarity of the open channel part range 0.22-0.43 eV, and using only two channels
of S. For energies above that dissociation limit, the (one open and one closed, asymptotically), the ab-
procedure described for the three-dimensional case by solute error in is less than 0.02 in the new method,
Delves [7] should be used. whereas for a previous method [2,101 that error is as

For symmetric reactions of the type A + BA- high as 0.23. If four channels are used, the hyper-
AB + A, the potential energy function V(a, p) is sym- spherical coordinate method produces reliable values
metric with respect to the a =amx/ 2 line in configu- of P 0 (to within 0.02) up to translational energies of

ration space, and the solutions which are even or odd 1.03 eV, whereas that previous method requires seven
for reflection through that line may be obtained or eight channels for equivalent convergence. This
separately, thereby decreasing the amount of numerical faster basis set convergence efficiency may make

" effort. this method particularly well suited for three-dimen-
sional calculations, for which high efficiency is required
for calculational feasibility [18,191.

3. Results It is interesting to note that the P, curves for n
> I in fig. 5 are very similar to each other and are

The results of accurate calculations for the H+ H2  nearly identical when plotted as functions of the
.-' H2 + H reaction on the PK surface, using the initial relative translational energy. This is strongly
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E/eV suggestive that an effective I MD potential may be

1.0 0.5 1.0 .5 2.0 2.5 3.0 found which duplicates all of them. The P curve is

also a simiilar to the n > _ ones if energies below that
oB - 00 of its first resonance are neglected. This comparison

suggests that the second resonance in A and the first
0.6 xTone in the J ri (n P 1) have analogous dynamical

origins.

0.4-

QL2 -4. Discussion and conclusions

C0  0 0 . 2.0The hyperspherical coordinate method seems0 .5 1-0 1.5 2.0 2.5 capable of tackling reactive scattering problems at+ 0.6

12 - fairly high energies. The present calculations are being
Q Ii extended to energies above the H2 dissociation limit.X QThe method can also be generalized to electronically

non-adiabatic processes in a straightforward manner02 
[20,21].

X OA -The difficulty other methods [2,9,10] have in
0 0.5 1. 15 2.0 tackling reactions with a light middle atom, such as

X Q6.
Z o R I + HI -- H + I, is related to the very sharp and rapid-
0 22 ly changing curvature of the minimum energy path

.4 of these systems, in the strong interaction region of
"IW configuration space. This in turn is due to the small-

0.2-
, : '_-. . ness of the corresponding skew angle, amax =

,J ,7__, __, __,__ .., tan-'(mM/m^mn) 1 /2 , which in that system is about
0- 0o o L_.o 1.5 7_. The present method does not suffer from this dif-

_0 . ficulty, since the propagation coordinate p is not
f P " related to that curvature.

0 Finally, the hyperspherical coordinate approach
C 2 - seems particularly suitable to the study of 3D sys-

o tems [12], since it greatly simplifies the A + BC

j bifurcation problem associated with the existence
0 ,.0 of two kinds of reactive products, AB + C and AC + B.

Q6 . .' . The solution to this problem is contained in the nature
44 - of the p = constant basis sets, which are the 3D

.4 - 44generalizations of the 0~,ja; T) eigenfunctions used in
- the present method. Such calculations are currently

0.2- being performed in our laboratory [22].

0 0.5
E,, /eV .0

Fig. 5. Vibrationally adiabatic reaction probabilities PER for the H + H2(n) -. H2(n) + H exchange reaction on the Porter-Karplus
potential energy surface, as a function of initial relative translational energy Etr and total energy F(measur d with respect to the
bottom of the isolatcd H2 well). The points are the results of the present calculations. The solid Po and Plt curves are cubic spline
fits to the previous results of Schatz and Kuppermann, which were performed up to E = 1.75 eV. The dashed curves are cubic spling

* fits to the present points, including some omitted from the plots for reasons of visibility. _
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Calculations of quantum mechanical probabilities for the I + HI -- +i I electronically adiabatic exchange reaction were
performed using hyperspherical coordinates. In spite of the small skew angle of 7r, accurate results were obtained with a
small number of channels. These results are compared with those of quasi-classical trajectory calculations.

1. Introduction However, due to the lightness of the atom transferred,
and the small skew angle associated with heavy-light-

Chemical reactions in which a hydrogen atom is heavy (H-L-H) atom systems, quantum effects may
transferred between two heavy atoms or groups of be expected [81. Accurate three-dimensional quantum
atoms of the type calculations on these systems are presently impractical
X +HY -X + because of the large number of channels involved in

* a coupled-channel calculation [9-12]. Nevertheless,
have been the subject of numerous experimental and an assessment of the magnitude of such quantum ef-
theoretical studies [I]. In many of the systems stud. fects can be made by performing accurate collinear
led, X and Y are halogen atoms 121; however, cases quantum mechanical calculations and comparing their
in which one or both of these are oxygen atoms [3) results with those of quasi-classical trajectory calcula-
or alkyl groups [41 have also received a great deal of tions. The small skew angle just mentioned makes
attention. In a number of studies [5), the halogen atom even the collinear calculations difficult to perform using
X is in its electronically excited 2Pl/2 state, and colli- the methodology available until recently [13]. For
sional quenching and electronic-to-vibrational energy example, for the reactive Cl + HBr -. CIH + Br system
(E-V) transfer have been investigated, in the only calculation of this type performed so far

Theoretical studies of these reactions have consist- [14, 40 channels were required. The small skew angle
ed mainly of classical trajectory calculations on the permits certain dynamical approximations to be made,
ground electronic potential energy surface. For however, and a few approximate treatments of these

S. example, a number of calculations have been perform- H-L-H systems, both quantum mechanical and classi-
ed on the a + HCI (61 and CI + HI [71 systems to cal, have been developed [15).
help understand the rate of vibrational relaxation and In this paper we report the results of accurate
the distribution of reaction products, respectively, coupled-channel electronically adiabatic quantum

Research supported in part by the US Air Force Office of mechanical calculations for the collinear reaction,

Scientific Research (Contract No. F49620-79-C-0187). I + HI - IH + 1, (2)
• Work performed in partial fulfilment of the requirements

for the Ph.D. in Chemistry at the California Institute of using hyperspherical coordinates. Two slightly different
Technology. potential energy surfaces were used. We also performed

* Contribution No. 6056. quasi-classical trajectory calculations on these surfaces.
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In section 2 we describe the method and the surfaces, Sufce A
and in section 3 we present and discuss the results. , *:.-.

JI > 020W~

2. Computational method and potential energy _ - - -.--- - - 0

urfaWes 1.0

The quantum mechanical method of hyperspherical Surf a
coordinates developed previously [16] * presents no -.-

*-. particular difficulty when the skew angle is small, and -

in the calculations reported here, that method was 0 ._-:

used without change. Six even and six odd basis func- 0.04

tions were used, and with them convergence of the
transition probabilities to ±0.005 and of flux to
0.0001 was usually achieved. Standard methods were 16.5 0

used for the collinear quasi-classical trajectory calcula-
tions [19,201. Fig. 1. Equipotential contour plots for I + HI, surfaces A and

The potential energy surfaces used were of the ex- B. in the region near the saddle points. The solid curves are
tee p ormia]e n d theirurfaaesmuseers and phee- the contours and are equally spaced in increments of 0.02tended LEPS form [211 and their parameters and prop. eV, from 0.04 to 0.20 eV. The zero of energy is the bottom

erties are listed in table 1. The Morse oscillator [22] of the HI wel. The surfaces are plotted in Delves' scaled co-
parameters for one of the surfaces (surface B) were ordinates (16-181. The x mark the saddle points, the dash-
those used previously [231 for trajectory calculations ed lines are the steepest ascent and descent paths as calculated
on the H + 12 system. However, we changed the Sato in Delves' scaled coordinates.

parameters from 0 to 0.20 for HI and 0.125 for 12 in
order to decrease the barrier height from ft14.2 kcal/ lilt system is not known, ab initio calculations on relat-
mole to :1 .5 kcal/mole. Although the barrier for the ed systems (F + HF, CI + HCI) suggest that a barrier of

• A related method, using the same coordinates but a different more than a few kcal/mole is unreasonably high [24].

asymptotic analysis, has been developed by Hauke et al. [ 171 The other surface (surface A) has the same LEPS
and used by Romelt 118). parameters as suiface B, except that the HI dissocia-

Table 1 tion energy was increased by 3 kcal/mole. The main

Parameters and properties of extended LEPS potential energy effect of this change is in the saddle point region, as
surfaces A and Ba) can be seen by observing the 0.06 eV equipotentia

in the contour plots displayed in fig. I.
Hl is

0 (bohr " ) 0.9260 0.9843 3. Results and discussion
Re (bohr- 1 ) 2.0236 5.0457
De (eV) A 3.3303 1.S567

B 3.2002 1.5567 Plots of the quantum probabilities of reaction (2)
A 0.2 0.125 from the ground vibrational state of the reagents to
saddle point location (bohr) the same state of the products, as a function of trans.

A (3.336, 3.336) lational energy, are given in figs. 2 and 3 for each of
- (3.370 3.370) the two surfaces. For the low-energy (0-15 meV)

barrier height (kcao/mole)
A 1.353 range Covered by fig. 3, the curve for surface A displays
3 1.526 a sharp peak followed by a second broader peak, where-

HI zero-point energy (eV) as for surface B, the sharp feature is absent and the
A 0.14447 other one is much broader and less intense. In order to
!U 0.14160B__ 0.14160assess the nature of these features, we have made an

a) Masses used: mH * I aiu, ml u 126.9 amu. Argand plot (251 of the corresponding scattering
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the iles indicate sur'face A, the squares surface B. Classical, .. . t -w

trajectory results are given by the dashed line for srface A Fig. 4. Argand diagram 251 for the S matrix element 5o

and the dashed-dotted line for surface B. The lowest energy corresponding to the exchange reaction I + HI (a, -*

portion of the quantum curve for srface A has been omitted (' = 0) + on surface A. Cicles represent points spaced by

for reaon of clarity. 0.05 meV trianles represent points spaced by 0.1 meV. The

energies indicated are reagent translational energies. Arrows

matrix elements, S 0, for surface A in fig. 4. It can parallel to the curve indicate direction of increasing eergy.0

* be seen that the sharp peak in fig. 3 is associated with
Sa loop in fig. 4, along which a representative point energy region corresponding to the second peak for

Smoves counterclockwise with increasing energy, as in-. surface A, the Argand diagram does not display such

dicated by the arrow in the upper part of fig. 4. This behavior, nor does that for surface B (not displayed),

dearly demonstrates a scattering resonance. In the which has the appearance of a smooth clockwise spiral.

it has been shown [26] that for collinear symmetric "

* o.c atom-diatom systems of the form A + BA, at ener-"

I I gies for which vibrationally excited channels of the -

0.8 BA molecule are closed, the difference, 5s - A, be. .

o~~a tween the symmetric and antisymmetric eigenphase "-

Su ae shifts increases by wr across a narrow isolated resonance.

06 In fig.S5we display6 8s,
8 A , and their difference as a -0

Sfunction 
of reagent translational energy for surface A.

,, Over the energy range considered, only the v = 0 .

o0.4 
state of HI is accessible, and the open part of the A

a: matrix has dimensions 2 X 2. its eigenvectors are in-

2 dependent of energy and correspond to symmetric and -

Santisyimetric scattering states, and its eigenvalues are ,0

* tan 8S and tan A, respectively. It can be seen from "-

0o a ,o fig. 5 that 5S - 8A changes by *,2.6 rad ( 0.85 i rad) "A

eoqev,1 T, as i,o noi E. nsqy /, Wv over the energy range asso ciated with th e narrow peak .

Fig. 3. (Qantum mechanical transition probabilities U i. in fig. 3. This is slightly less than it ad because tis"

2 for the low tanlational energy rante. No classical trajectory resonance is not completely isolated, as is indicated

reslts ae shown. by the fact that the reaction probability drops to 0.2 -
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i.0 n-0 2460 10

I+H 3.0 1. _

2- 2D >

0. 2

i..24

Rec-t Engy /"*ne0

Fig. 5. Symmetric (6S. dashed line) and antisymmetric (6 A. p /boh,

dashed-dotted line) eigenphase shifts as a function of reagent
transltional energy caJculated for surface A. The difference Fig. 6. Eigenvalues E,,(p) for surface A as a function of the

6 &A (solid line) is also shown (the right-hand ordinate propagation coordinate p. Thee curves ar pairwise degenerate
male is the appropriate one for this quantity). at large p, the symmetric one being always lower than the cor-

wsponding antisymmetric one at small p. Values of n for the
rather than 0 after that peak, before starting to increase symmetric curves are shown at the top of the figure. The dash.
again. The time delay associated with this resonance, ed line in the Eo(p) curve shows the position of the resoMce

and lies slightly above Eo(-).
-= 2h d(b s - a )/AWE,

has a maximum value of 2.04 X 10-i s, which is of the 12 lowest such eigenvalues versus p is given in
much larger than the symmetric stretch vibration period fig. 6, and they show minima for the ones correspond- •
of 4,60 X 10-13 s for the saddle point configuration of ing to symmetric eigenfunctions. Since motion from
surface A. Fc,t comparison, across the broad peak in reagents to products across the strong interaction
fig. 3 for surface B, 8S - SA increases by 0.14 ir rad region of the surface involves a relatively small change
only, the corresponding maximum value of r is 4.74 in p and a relatively large fractional change in a, an
X 10-13 s, compared with 4.64 X 10-13 s for the a-adiabatic model of resonances was proposed recent-
saddle point symmetric stretch period of that surface. ly 1281. This model consists of solving the Schrodinger
We conclude that the sharp peak in fig. 3 for surface A equation for the quasi-bound one-dimensional p mo-
is associated with a strong, long-lived resonance, where- tion on each of the individual Ej(p) curves, in analogy
as for surface B, the broad peak in fit. 3 is at most to the Born-Oppenheimer separation of electronic
associated with a very weak resonance. This indicates and nuclear motions. It was shown to work well for
once more [9,27) the great sensitivity that dynamic the first resonance in H + H2 and its symmetric
resonances on reactive systems can have to details isotope counterparts. For the n = 0 curve of fig. 6,
of the saddle point region of potential energy surfaces. this model predicted the position and width of the sur-
This sensitivity holds out the enticing possibility face A resonance indicated by "model I" in table 2.
that the experimental measurement of such resonances The agreement with the exact values is satisfactory.
may be useful in the determination of the characteris- Babamov and Marcus [29] have recently shown
tics of that region of potential energy surfaces. that for H-L-H symmetric systems, below the open-

An interpretation of this resonance can be obtained ing of the first excited state, the PR reaction prob-
as follows. The hyperspherical coordinate method used ability is related to the phase shifts 1L) and 5 ID, ob-
in the present calculations [ 16-181 involves a radial tained from the one-dimensional p motion described
distance p and a polar angle a associated with Delves' above, by the expression
coordinates R, r, of fig. 1. For fixed p., we can cal- p -_ sin2 (+sD a I D)
culate the eigenvalues E,() of the a motion. A plot S A
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Tabe 2
C culated and predicted properties of peaks of reaction probability versus energy curves

Exact Model I a) Model 11 b)

urface A
resonance location (MeV) 6.08 4.7 4.7
resonance width (meV)

fwhm 0.16 0.12 0.13
surface B

peak location (meV) 8.00 c) 8.2
maximum reaction

probability 0.187 c) 0.19

a) Ref. 1281. b) Ref. 1291. ) Not applicable, since this feature is not a resonance. "0

Using this relation, we obtain the peak locations through the strong interaction region to the product
and widths given in the "model 11" column of table 2. region [8,30,311 are made very difficult by the small-
The agreement with the accurate values is about the ness of the skew angle. Indeed, these methods involve
same as for model I for the surface A resonance. How- expansions in eigenfunctions of cuts of the surface
ever, it is better than model I in that it also predicts along a direction more or less transverse to the mini-
quite well the position and height of the broad peak mum energy path, and, as a result of that small angle,
for surface B, which is not a resonance, whereas model such cuts are very broad and support a large number
I is not applicable to features that are not resonances. of bound states. Indeed, for the Ihi system considered

The difference in the dynamics of the reaction on in this paper, the symmetric stretch cut through the
the two surfaces at higher energies consists of a shift surface A saddle point supports 50 bound states with
of the pR curve by f,30 or 35 meV to the right on energies below that of the v - 2 state of the isolated "0
going from surface A to surface B. This shift is sig- HI molecule, which is open at the highest energy con-
nificantly higher than either the difference between sidered in these calculations. In order to incorporate
the corresponding barrier heights (7.5 meV) or be. all such open local states and a sufficiently large num-
tween the reagent zero-point energies measured with ber of closed states in that expansion so as to achieve
respect to the corresponding barrier tops (10.3 meV). reasonable convergence of the results would require

* The reason for this may be that, since the reagent an unreasonably large number of channels. By con-
ground-state energies are significantly greater than trast, the present method requires only six even and
the saddle point energy, the sharp skew angle of the six odd channels, as described in section 2. The essen-
coordinate system makes "comer cutting" quite likely. tial reason for the adequacy of such a small number of
This suggests that the dominant region of the surface channels is that the hyperspherical coordinates avoid
occurs at larger values of p than that of the saddle a proliferation of open-channel basis functions. In-

* point. Additional information on this matter can be deed, for these coordinates the number of open chan- 0
- obtained from maps of quantum streamlines of prob- nels in the strong interaction region is about the same

ability current density or classical trajectories. as it is in the separated reagent or separated product
The oscillatory nature of the 4R versus energy regions of the potential energy surface, as shown in

curves at translational energies above 10 meV is not fig. 6. This method is therefore to be preferred for
of a quantum nature, as it is also present in the classi- the study of collinear H-L-H systems, whether sym-
cal trajectory results displayed in fig. 2 metric or not.

We wish to emphasize the ease with which the meth.
od of hyperspherical coordinates may be applied to
collinear H-L-H systems. Applications of previous Acknowledgement
methods based on a propagation variable that scans
the potential energy surface from the reagent region We would like to thank Dr. Vasil Babamov for many
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QUANTUM MECHANICAL COUPLED-CHANNEL COLLISION-INDUCED

DISSOCIATION CALCULATIONS WITH HYPERSPHERICAL COORDINATES *
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A time-independent coupled-channel method, using hyperspherical coordinates, has been developed for calculating
quantum mechanical collision-induced dissociation probabilities for collinear atom-diatom systems in which the exchange
reaction can also occur. The results for a model potential energy surface are compared with quasi-classical trajectory calcu- 0
lations and discussed.

1. Introduction Kulander [ I I has included exchange processes by
solving numerically the time-dependent Schr6dinger

The collision-induced dissociation (CID) of di- equation for cleverly chosen initial wave packets and
* atomic molecules has been the subject of extensive ex- obtained bound-to-continuum and bound-to-bound

perimental investigation [1-31. In order to under- transition probabilities in collinear atom-diatom col-
stand and to model this important process [41, it is lisions. This conceptually elegant method is, however,
necessary to obtain the bound-to-continuum transi- computationally time consuming and difficult to ap-
tion probabilities as well as the usual bound-to-bound ply at energies close to the dissociation threshold.
ones. Approximate classical [51, semi-classical (61, In this paper we report the first successful time-

• and quantum [71 techniques have been created for independent treatment of CID in a collinear atom-
this purpose. However, the developrment of accurate diatom system in which the exchange process is pres-
quantum mechanical methods for systems in which ent. This work uses the method of hyperspherical co-
CID competes with exchange processes has been hin- ordinates [ 12- 161 which has recently been applied
dered by the difficulty of representing the exchange to the collinear exchange reactions
product bound states in terms of the reagent bound O-

4. and continuum states [7,81. As a result, systems in H + H2 - H2 + H
which the exchange channel is absent have mainly and [171
been considered in previous calculations 17,91. A
method capable of taking such rearrangement chan- I + I -- IH + I
nels into account, based on a multiple-collision expan- at energies below dissociation.
sion, has recently been applied for a potential that, In section 2 we briefly outline the nature and the •
however, does not support exchange products [101. method of hyperspherical coordinates, emphasizing

those aspects of it which are crucial in the treatment
* Supported in part by a Contract (No. F49620-79-C-01 87) of CID. The potential energy surface used in these

from the US Air Force Office of Scientific Research. calculations is discussed in section 3, and the results
* Work performed in partial fulfilment of the requirements obtained are presented, discussed, and compared with

for the Ph.D. degree in Chemistry at the California Institute
of Technology. those from quasi-classical trajectory calculations in 'O

*Contribution No. 6302. section 4.
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2. Theory a circle of constant p =5 is described by a set of en-
ergy eigenfunctions 0n(a;T) and eigenvaues E.(p).

Let us consider the A + BC system, with A, B, and The former are called surface functions and constitute

C representing distinguishable atoms confined to move an infinite discrete set which, as 5 - cc spar,; the
on a laboratory-fixed straight line. Let r, and R, be, dissociation continuum. Expansion of the scattering
respectively, the BC internuclear distance and the wavefunction in the 0n leads to a set of coupled- -

distance of A to the center of mass of BC. Let r' and channel differential equations that have been derived

R; be the corresponding distances with the roles of and are integrated as described previously [13-161#
A and C interchanged. The Delves' scaled coordinates out to a sufficiently large value of p.
[1 2 1, Rx and rx are defined as At energies at which no continuum states (those

R x (!UXvK1MvK)/
4  with positive eigenvalues with respect to the disso-

= ax X .lXx ciated configuration A + B + C) need be included in p
the calculations, we re-expand, after that integration,

Here, Xw is either a4y or , P is the reduced the wavefunction ', in R,,r, and R 7 ,ry coordinates,
mass of m , and m.,Mx is the reduced mass of mx using the numerically determined eigenfunctions
and m, + m 5 , and m., m., and m 7 are the masses of O4n 0(r.) and O-,n.(ry) of the isolated reagent and
A, B, and C, respectively. The collinear hyperspheri- product, respectively, as the new basis functions. In
cal coordinates are defined as this manner, we obtain , and its Rx derivative along •
p = (R 2 ,- r2 )1/ 2 , a = tan-i(r./R.) lines of constant Rx = R ), (-A = a, y). We call this

x X procedure a projection of ' on the asymptotic

0 <a < ff12 (2) reagent and product states. From the coefficients of
this new expansion, the R,S, and P matrices are

and are indicated in fig. 1. The Schr6dinger equation calculated by standard techniques [13,161. For H +
for the internal motion of the ABC system is the H2 , this procedure leads to results converged to 1% r,

same as that of a single particle P of mass p =  or better for values ofRx of -8 bohr or less [131.
[mom aM 7/(ma + m0 + M.f)] 1/2 moving in the two- Alternatively, one can omit this projection altogether,
dimensional p,a space and subject to the potential since as A -- the 0,(a;p) for negative eigenvalues
V(acp) of the triatomic system. The motion of P on become the separated reagent or product eigenstates

(or their even and odd linear combinations for sym-
metric systems). However, this leads to a large-

6 . / amplitude oscillatory behavior of the reaction prob-
/ /abilities with p, as found by R6melt [191, which re-

7 / quires integration to appreciably larger values ofp.
• / At total energies E for which dissociative chan-

nels must be included in the expansion to achieve
-0.02 ,,

.* -/ ","./// ( ____convergence, as is the case for all collision energies

2- / -0.08 above the dissociation limit, we have chosen to pro.
.020 ject the bound-state channels as described above,

.. . . . . and not to project the continuum ones at all. In the

'a - o= limit these results converge to the correct
o 2 4 6 a ones, while maintaining the rapid rate of conver-R/boh gence for the bound-to-bound transition probabili- .. p

4 Fig. 1. Contour plot of the potential energy surface for a mod- ties. Other projection methods are possible and are
el collinear triatomic system in Delves' scaled coordinates being investigated.
R,,r, . The solid curves are equipotential contours at the total
energies (with respect to the dissociated system) indicated in
the lower side of the figure. The dashed line is the minimum *A method similar to that of ref. J 13 1, using the same coor-
energy path. The polar coordinates pa of a general point P in dinates but a different asymptotic analysis, has been de-
thisR,,ra configuration space are also indicated. veloped by Hauke et aL 181 and used by R6mclt 1191.
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The resulting scattering matrix S is discrete, and 3. Potential energy surface
the scattering wavefunction 0*n*, corresponding to
the system being initially in bound state n. of the In order to test the method described above with-
diatomic target BC, has the asymptotic form (for out excessive emphasis on bound states, we con.
asymmetric systems, in which atoms A and C are dif- structed a model collinear potential energy surface ..'0
ferent) for which the isolated diatomic reagent or product

Z. Jexp(- .BXn potential energy curves supported only two such
-' X WXstates, in analogy with weak van der Waals mole-

cules. The mathematical form chosen for this sur-
+ .  face was of the rotating Morse--cubic-spline type[201. The three atoms considered were identical

+ P_112 r exp(ikp)(.\n A/)/ 2S1n on( or;-) but distinguishable (by virtue of their relative posi-
Stion on the line to which they were confined), and

ne(3) were assigned a mass equal to that of a hydrogen
In this expression, the sum over extends over atom. The corresponding isolated diatomic mole-
all bound states of BC and AB, whereas the sum over cules were chosen to have Morse parameters (21
n extends over the continuum (En > 0) states. The D,= 0.22 eV, (3 1.6 bohr 1 , and r, 1.40083 7
several k and v represent, respectively, the appropri- bohr e e s o te bo nd se support-at hne wv ubr advlctes ntrsbohr. The energies of the two bound states support- ""

ate channel wave numbers and velocities. In termis ed by each of these Morse oscillators was 0.0817 and
of the elements of the scattering matrix appearing 0.1885 eV above the bottom of the diatom well.
in (W), the bound-to-bound and total bound-to- The saddle point occurred at internuclear distances

dissociated transition probabilities are given, respec-
tively, by rAB = r k = 1.6496 bohr, and its height was 0.14

eV. In fig. 1 we display a contour plot of this potential
.= S ,12, (4) energy function, and in fig. 2 we indicate schemat-A n Al AWkically its features along the minimum energy path.

d'XZS~f~2 (5)
n

The differential probability for producing dissociated
products for which atom A has a center of mass en. :-AP
ergy EA is given by 0 Dissociation

daxY"A(EA) =datdEA1 I- - -I

Re[!'  . .(O n4 (n' . , n7> (6) 0.22 eV 0.1885 eVX Re[F V.a ,(.)Ss)) 6) =o

where a is related to EA by

EA = E m" cos2 a ,
0.14e 0.0815 eV

E~AT - [(mi + m)/(ma + m. + m.)]E. (7) -0.2

The total dissociation probability is related to the 6 .4 -2 0 2 4 6
differential one by s/bohr
Pn E.WE~ AFig. 2. Schematic diagram of the potential energy function

' f Od (EA) dEA. (8) characteristics along the minimum energy path in Delves' co-

O ordinate space. s is the distance along that path measuredFor symmetric systems, the *0n(o; ) in eqs. (3) and front the saddle point configuration, and V(s) the correspond-
ing potential energy. The horizontal lines indicate the energy

(6) must be replaced by appropriate linear combi- levels of the bound states (u = 0 and 1) of the isolated diatoms

nations of the even and odd surface functions, and of the dissociated configuration.
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*4. Results and discussitin cent studies [10,11,221. Up to translational energies
of 0. 10 eV for vibrationally excited reagents and 0. 15

The results of these calculations as well as those of eV for ground-state ones, the probability of the ex-
quasi-classical trajectory ones as a function of relative change reaction occurring without change of vibra-
translational energy are given in figs. 3 and 4 for re- tional quantum number is significantly larger than
agents in their ground and vibrationally excited states, the one with change in that number. Up to total en-
respectively. Convergence of the transition probabili. ergies of 0.32 eV the non-reactive inelastic process

*ties to zO.02 or better was achieved with ten even and 0 - I (and I - 0) has probabilities smaller than 0.03
ten odd basis functions 131. The maximum value and is not shown in figs. 3 and 4.

p xof p needed to achieve this convergence was The quasi-classical trajectory results display the

ofbor same general features as the accurate quantum ones,
At the saine translational energy, enhancement of giving confidence that classical mechanics furnishes

the CID probabilities by reagent vibrational excitation an adequate qualitative description of the system's
*is clearly observed, in agreement with a number of re- dynamics. However, errors of a factor of two or

Total Energy /eV
0.1 0.2 03 0.4

0.6-.

04- 
Aa

X 02 0 CLRC

0.01P

0.60.0eVfr raina0 xcieeaet)ad01

08-
~ 00

- S6

' 0.2 - .

..................................... .............
0.0 1 1 ..-. . .......

0.0 0.102 a 34
* Reagent Transiational Energy /eV

Fig. 3. Trassition probabilities as a function of relative translational energy and total energy for ground-state ragntL (a) Quantum

mechanical (QM, solid line) and quasi-classical (CL, dashed line) total probabilities for reactive (R), non-reactive (N), and disso-
aative (D) processes. The arrows on the lower abscissa labeled E, and Ed indicate the energies of the first vibrationally excited
state of the reagent and the reagent dissociation energy, respectively. (b) State-to-state quantum mechanical probabilities for vi
brationaly adiabatic (pr dotted hine) and vibrationally non-adiabatic (Pti, dashed-dotted line) reactive proceSSes The dissocia-
tion probability curve QM, solid line) is included again for comparison purposes. Arrows in the abscissa have the sme mean-
ing as in (a).
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Total Energy /eV
0 02 0. 0.4

I0

I .,..(b

o. , - _ I¢ -~ pc

/CL

J0.6 /."

S04-Da

am _10 am............

00 0.2 ,fta

Reagent Translational EnergyTeV

Fig. 4. Transition probabilities as a function of relative translational energy and total energy for the diatom reagent in its first (and""

Q only) vibrationaliy excited state. Notation is the same as for fig. 3.

greater are encountered in the quasi-classical proba. This hyperspherical coordinate approach has been
bilities when compared with the quantum ones, shown recently to be very suitable for handling heavy-:

We wish to emphasize the ease with which these light-heavy collinear reactive systems [171. The pres-
calculations may be performed. The relatively large ent work indicates that it is also suitable for collinear
value of Pmax required for good convergence of the CII) calculations. Extension of the method to en-

d"transition probabilities does not increase the computa. compass electronicaly non-adiabatic processes should S.
tion time excessively since in the large p region the in- be straightforward [23,24. The treatment of CID in, -

tegration step is quite large (>0.1 bohr) and the ca- atom-diatom collisions can, in principle, be extended...

culation time increases only linearly with the number to the three-dimensional physical world, since the car-"._
of integration steps. In addition, a more appropriate responding generalization of the surface functions .
asymptotic analysis may permit a decrease in Pmax" still forms an infinite discrete set [I15,16]. This ex-
The relatively small value of the number of E, > 0 tension is particularly important, since it has been ob- .S

channels of each parity needed to provide an adequate served in classical trajectory caiculations [25] that a
discretized representation of the dissociation continu- collinear model cannot ade' . . tely describe the dy-
umn, namely eight, for the energy range considered, is namics of CID. However, the J rge ,iumber of channels
encouraging, since the computation time varies ap- involved in such three-dimensional systems will un-
proximately as the cube of the number of coupled doubtedly require the introduction of approximations
channels, in the calculation.
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In summary, hyperspherical coordinates seem to 18) G. Wolken Jr., J. Chem. PhyL 63 (1975) 628.
' provide a very useful language for the description and [91 L.W. Ford, D.J. Diestler and A.F. Wagner, J. Chem.

elucidation of the dynamical processes occurring in Phys. 63 (1975) 2019;

molecular collisions, including collision-induced dis- E.-W. Knapp, D.J. Diestler and Y.-W. Lin, Chem. Phys.
Letters 49 (1977) 379;

sociation and its reverse, three-body recombination. E..W. Knapp and D.J. Diestler, J. Chem. Phys. 67 (1977)
4969.
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* Mass effect in uantum mechanical collision-induced dissociation in

collinear reactive atom-diatomic molecule collisions.

I. Symmetric systemsa)

Jack A. Kaye b ) and Aron Kuppermann

Arthur Amos Noyes Laboratory of Chemical Physics c)

California Institute of Technology, Pasadena, California 91125

(Received )

Quantum mechanical probabilities for collision-induced dissocia-

tion (CID) and chemical reactions have been obtained for a model

triatomic collinear system,

A+BC(v) A+BC(v'), AB(v")+ C, A+B+ C

using hyperspherical coordinates. Details of the methodology

used for CID are presented. Calculations were performed for

three different symmetric mass combinations (mA = mB = mc,

m =M m B) corresponding to light-light-light, heavy-light-

heavy, and light-heavy-light systems. CID was found to be

enhanced by reagent vibrational energy and to be most likely

in the light-heavy-light system and least likely in the heavy-

light-heavy system. Vibrationally nonadiabatic processes

* a) This work was supported in part by a contract (No. F49620-79-C-

0187) from the Air Force Office of Scientific Research.

b) Work performed in partial fulfillment of the requirements for the

Ph. D. degree in Chemistry at the California Institute of Technology.
c) Contribution No.
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were found to be of only secondary

importance compared with either CID or vibrationally adiabatic

ones. The activation energies for CID were found to be substan-

tially in excess of the energetic threshold. The exchange reac-

tion was found to be vibrationaliy enhanced, the reagent vibra-

tional excitation being partly effective in lowering the activation

energy of the reaction. Indication of a resonance in the heavy-

light-heavy system has been found in spite of the large barrier

to reaction. Quasi-classical trajectory calculations on the light-

light-light system suggest that classical mechanics furnishes an

adequate representation of the main features of the dynamics in

these systems.

4
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I. INTRODUCTION

The collision-induced dissociation (CID) of diatomic molecules

A+BC - A+ B+C (1)

and its inverse process three-body recombination

A+B+C - A+B (2)

0 have been of great interest over the years to both experimentalists and

theoreticians. To experimentalists, much of the interest has arisen

from unusual temperature dependence of the rate of these reactions:

the activation energy for CID is frequently less than the dissociation .
1

energy of the diatomic molecule, and the rate of three-body recom-

bination frequently decreases with increasing temperature. 2

* To theoreticians, however, the challenge has been to describe

the dynamics of the collision process itself from first principles.

Because of the double continuum of product states inherent in CID, this

* is far more complicated for this process than for the usual inelastic

and/or reactive atom-diatomic molecule collision problem,

A + BC(n) - A + BC(n') (3a)

AB(n") + C , (3b)

where n r- presents the set of all quantum numbers (electronic, vibra-

tional, and rotational). Extension of the coupled-channel formulation

to exact quantum mechanical calculations of CID, occurring in compe-
3 -

tition with exchange processes, has previously not been possible.

Information about the CID process (and its inverse process

three-body recombination) has been obtained from models based on

4 5
kinematics, from quasi-classical trajectory calculations, from
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6 7
semi-classical calculations, and from statistical models. Quantum

mechanical treatments have been limited mainly to studies of systems

in which only CID and inelastic nonreactive processes (such as those

represented by Eq. (3a)] occur. 3 Only recently have exact quantum

mechanical methods for CID for systems in which chemical reactions

[Eq. (3b)] may also occur been developed. These techniques consist of

the time-dependent wave-packet approach developed by Kulander,1 0

which has been applied to the collinear H + H2 system above threshold,

a multiple collision formalism developed by Beard and Micha (but so
11

far applied only to nonreactive systems), and the time-independent

hyperspherical coordinate methods, developed independently by

Kuppermann et al. 12 and Manz et al. 13

The ability to study reactive systems is important, as experi-

ments and quasi-classical trajectory calculations suggest that CID

and its inverse process, three-body recombination, is much more
8

rapid in reactive systems than in nonreactive ones. In addition, the w

detailed nature of the dissociation or recombination processes may be

different in reactive and nonreactive systems due to the greater

diversity of types of collisions. 9D

As accurate quantum studies of CID are relatively new, it is

important to perform studies that help to develop intuition about the

effect on the CID process of changes in the potential energy surface

and in the masses of the atoms involved. Most such studies have been

limited to nonreactive systems, notably the quasi-classical trajectory

14
calculations of Wong and Burns on rare-gas plus bromine collisions

and the collision-induced ion-pair experiments of Tully

et al. on rare gas plus alkali halide systems15 and of Parks et al. on
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rare gas plus thallium halide monomer and dimer systems. 16

In this work we will discuss in detail the results of exact collinear

quantum mechanical CID calculations on a model reactive potential

energy surface for three different mass combinations: m A = m =

mC=l ; mA=mC= 10, mB=1; andmA = mC = 1, mB - = 35, in units

of the H-atom mass. Results for one of these mass combinations

(and comparisons with collinear quasi-classical trajectory calculations)

have been summarized previously. 12c We will analyze and interpret

the probability versus energy curves and temperature dependence of

the corresponding CM and exchange reaction rate constants for the

three cases studied.

In Sec. II we describe the potential energy surface and different

mass combinations used in these calculations. In Sec. IM we briefly

review the application of the hyperspherical coordinate methods to

CID. In Sec. IV we present the results obtained in these calculations,

which are analyzed and discussed in Sec. V. Finally, in See. VI we

summarize our results.

a0-!



:* °

-6-

II. POTENTIAL ENERGY SURFACE

The potential energy surface V used in the calculations reported
17here is of the rotating Morse cubic spline type, and has been briefly

described previously. 12b The three atoms are labeled A, B, and C, CO

with B always occupying the middle position, and RAB and RBC repre-

senting the distance of the latter to A and C, respectively. For RAB >

7 bohr and RBC < 7 bohr, the potential energy function is that of a

Morse oscillator

-RBC-Req)- ]
V(RAB, RBC) = De{[e e - 1]2 - (4)

whereD = 0.22 eV, 1=1.6 bohr-F, and R =1. 40083 bohr. Fore eq
RBC > 7 bohr and RAB < 7 bohr, an expression analogous to (4), with

the roles of RAB and RBC interchanged, is used. For both RAB and

RBC greater than 7 bohr, V(RAB,RBC) = 0. Finally, for RAB and RBC

both smaller than 7 bohr, V is defined in Ref. 17. It has the form of a

Morse curve,

V(RAB, RBC) = D(8){(1 - exp[1()(2e(8) - 1)] 1 _ i}+ D(8 = 0).10o(eq(0

In this expression, 8 is the swing angle defined in Fig. 1 around the

point S whose coordinates are RAB = RBC = 7 bohr, and I is the distance

of the point P(RAB, RBC) to S. 8 varies from 0' to 900, and the 8-

" dependent Morse parameters D(G), eq(8) and P(8) are symmetric with

respect to 8 = 450 and are defined as follows. D(8) is given by the

Gaussian function

D(O) De - b{exp[-c( 8)2] - exp[-c( !)2 (5)

where b = 0. 14101 eV and c = 8. 00876 rad" , yielding a classical barrier

* JP
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height of 0. 14 eV. The functions 1eq(0) and 0(0) are given in Table I

for eight values of 9 in the range 0° to 45' . For intermediary values

of 0, they are obtained by a cubic spline interpolation. For 0 in the

range of 45' to 900, they are obtained by the symmetry condition with
18

respect to 0 = 45'. A plot of the potential energy surface in Delves

mass scaled coordinates for the mass combination 1 - 1 - 1 is given in

Fig. 2. As described previously, for this mass combination, asymp- O

totically the Morse oscillator supports two ground states, with energy

eigenvalues of 0. 0817 and 0. 1885 eV above the bottom of the isolated

di atomic well.

In order to help elucidate the nature of the dependence of CID on

masses, we considered, in addition, the mass combinations 10 - 1 - 10

and 1 - 35 - 1. These were chosen to broadly scan the possible range

(00 to 90 ° ) of skew angles in Delves 18 mass weighted coordinates, as it

is known that this skew angle plays a major role in determining the

dynamics of a reactive system independent of the nature of the forces
19

between the atoms. These mass combinations give skew angles of

24. 620 and 88.41', respectively, whereas the skew angle for the 1 - 1 - 1

combination is 600. Various properties of the different mass combina-

tions are summarized in Table I. Of particular note is the fact that for

the 10 - 1 - 10 and 1 - 35 - 1 mass combinations, there are three bound

states of the isolated diatomic molecules, as opposed to two for the

1 - 1 - 1 combination. Also, the two lowest eigenvalues of the isolated

1 - 10 and 35 - 1 diatomic molecules are quite similar, which suggests

that differences in CID for these two systems cannot be attributed to

differing amounts of reagent vibrational excitation energy.
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I. THE HYPERSPHERICAL COORDINATE METHOD AND ITS
APPLICATION TO CID

The hyperspherical coordinate method has been outlined previous-

ly12a, 20 and we will not repeat the foruialism in detail here. We have

also indicated briefly how the method is applied to CID, and will expand

upon that aspect of the treatment.

In the hyperspherical coordinate approach, the primitive wave- Ce
functions %j(p, a) are expanded in terms of a discrete set of basis

functions,
IN

41i(P, cl) =P-,! Z gij (PP)Oi(cf;), (6)

j

where p and a are, respectively, the distance and angle coordinates of

a point in Delves' configuration space, and T is the value of p at which

the diabatic basis functions qi are calculated. The use of a diabatic

basis set gives rise to a parametric dependence of the expansion coeffi-

cients gij on 5. N is the number of channels included in the calculation.

* 12aAs indicated previously, when p is sufficiently large and the

A + BC and AB + C configurations are sufficiently separated from one

another by the dissociative plateau, we may rewrite that portion ib of

the wavefunction that correlates asymptotically with the BC or AB by

reexpanding it in terms of the eigenfunctions of the corresponding

isolated diatomic molecule [in Delves 18 coordinates],

NBC

b, A+BC(P, A+BC A+BC

the* ~~ ~ A ba=i set A (rAA= h

similar expression being used for iAB.. Using the orthogonality of

tA+BC- A+BC coefficients defined above
tA*A w), ij
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can be calculated from

rA max)

rA(min)
BCb A+BC

× *,A+BC(p, a)drA (8)

where the integration limits are chosen so that contributions to the

0 integral from outside their range are negligible. In this expression,

p and a are functions of rA and RA through the relations p = (r'+ R")1

and a = tan'(rA/RA). The derivative of the radial wavefunction matrix

4hA+BC with respect to RA is obtained by differentiating Eq. (8) with

respect to this variable.

In the symmetric systems studied here (where the mass combina-

tion is of the A + BC type), a projection onto the basis functions of the

isolated AB diatomic need not be performed explicitly, as xA +BC

AB+C when A = C. In this case, we may obtain the corresponding

radial wavefunction matrix elements from the relationship

f hA+BC,(. --
hAB+Ci (A'A = 00) if I/ is symmetric

* ; -h-+BC(RA;RA = a) if *j is antisymmetric,

where the symmetry of 4,j is about the line a =tmax/2. The derivatives

h' are similarly related.

The matrix G of the coefficients used in the asymptotic (R and S

matrix) analysis is given by

• _]

*1
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h A4BC

G = =(10)

(P_ UnI

where hA+BC is evaluated at a large value of RA, chosen arbitrarily,

and hAB c is evaluated at R C = RA. The value of p at which the unpro-

jected gun is evaluated can be chosen according to different criteria.

One is to make it equal to RA. Another is to make it equal to [R +
2 e 2 1

rA(max) ]2. Still another is to pick [R2 + r q (RA)]a, where req(RA)

is the value of rA for which V(RA, rA) has a minimum for a given RA.

Alternate choices are obtained by interchanging the roles of A and C.

In the limit as RA 0, all of these should lead to the same result. In

the calculations reported here, we selected the second criterion. The

derivative G' is defined by the expression

(hi A+BC
G1 hAB+C ( 1)-2 tun -sen

\po g _ LPg 0

where g' un is also calculated at the same value of p as _gun.

1 21 21In the asymptotic analysis, 22 the eigenvalues of the bound

states are precisely their asymptotic values due to the invariance of the

potential beyond the RAB, RBC cutoff d, fined in the previous section.

The eigenvalues of the continuum states decrease continuously with

increasing T, however, and the local wavenumber associated with each

channel is nonzero and unique. At an infinite value of j and p, all

continuum eigenvalues would be zero, however. Thus, stopping integra-

tion short of p = leads to approximations in the method, notably the



assumption that the basis set {XA * B C , X A B +C , P(E > 0) } is orthonormal,

which is not true at finite 5.

As a result of this approximation, the convergence of state-to-

state reaction probabilities with the stopping point of the integration Pas

(where the asymptotic analysis is performed) is not nearly as rapid as

in the bound-bound problem we have studied. For the 1-1-1 mass

combination, plots of dissociation probability versus integration stopping

point displayed what could best be described as damped oscillations.

By carrying integration in that system to p = 76 bohr, all probabilities

seem to be converged to * 0. 01; most probabilities, especially those

involving the v = 0 state, should be even better converged. For the

10-1-10 and 1-35-1 mass combinations, integration was carried out to

* p = 90 and p = 45 bohr, which correspond to about the same value RAB =

RBC = 30 bohr at which the 1-1-1 integration was stopped. The differ-

ence in these three values of p is due to the mass scaling inherent in the

0 Delves coordinate systems. Ten even and ten odd channels were used

in the integration of the coupled equations in the 1-1-1 system; 12 of

each were used for the two others. Flux was conserved to better than

b. 3% in the 1-1-1 calculations, 4. 5% in the 10-1-10 calculations, and

12. 5% in the 1-35-1 calculations. These limits were obtained at the

highest energies; at lower energies, the flux conservation was far

better. Since our interests here are mainly qualitative (i. e., to con-

sider general dependence at CID on the initial reagent vibrational state

and on the mass combination), we considered these calculations to be

sufficiently accurate for analysis. S

.]
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Rate constants were obtained from the calculated reaction prob-

abilities by straightforward numerical integration, assuming an equilib-

rium (Boltzmann) distribution of relative kinetic energies. For the

1-1-1 system, rate constants were calculated using results obtained

from scattering calculations in which the integration was stopped at

p = 32 bohr, as calculations were performed for far more energies in

these calculations than in those in which the integration was carried out

to P = 76 bohr.

Arrhenius parameters (pre-exponential factors and activation

energies) were obtained by a least-squares fit to the rate constant data

over a region of temperature in which the Arrhenius plots (logarithm of

rate constant versus inverse temperature) were linear.

0i

6 .$
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IV. RESULTS

We have studied the dynamics of the model system described

above for the mass combinations 1-1-1, 10-1-10, and 1-35-1 up to an

energy 0. 25 eV above the dissociation energy of the isolated diatomic

molecules. Our attention has been focused on the probabilities of

reaction and dissociation as a function of translational energy and of

reagent vibrational excitation. We have looked at the amount of vibra-

tional nonadiabaticity in the exchange reactions, and have calculated

state-to-all and, in some cases, state-to-state rate constants (and

their associated Arrhenius parameters).

Plots of state-to-state reaction probability versus reagent trans-

lational energy for the 1-1-1, 10-1-10, and 1-35-1 mass combinations
are shown in Figs. 2, 3, and 4, respectively. The figures are con-

structed such that in any one figure, a vertical line always corresponds

to the same total energy. Hence, the translational origins in each panel
within a figure are shifted to account for the different internal energy in

each reagent vibrational level. In Figs. 5, 6, and 7, similar plots are

constructed for the total reactive, nonreactive, and dissociative prob-

abilities. Reactive and dissociative rate constants in the temperature

range 200' K < T < 6500 K for the three mass combinations are given in

theformof Arrhenius plots (in 0 K versus 1/T) in Figs. 8, 9, and 10.

Finally, in Fig. 11, we present Arrhenius plots of state-to-state

reactive (and dissociative) rate constants for the 1-35-1 mass combina-

tion, as that is the one with the greatest amount of vibrational nonadia-

baticity and dissociation.

A
-1

S ~.
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V. DISCUSSION

Two main features are evident in the results obtained from these

calculations. First, there is substantial vibrational enhancement of

CID as the reagent vibrational energy is increased, in all of the systems

studied. Second, there is a major difference in the CID probability ver-

sus energy curves for the three different mass combinations. In addi-

tion, important information is contained in these results about the rela-

tive importance of CID, reaction, and nonreactive processes, the magni-

tude of vibrational nonadiabatic processes, and the possible importance

of resonances in chemical reactions occurring in this model system.

We now proceed to examine these points in greater detail.

The probabilities for reaction and for CID displayed in Figs. 3 to

7 clearly demonstrate the importance of vibrational enhancement of CID.

While this is clearest in the 10-1-10 mass combination, it is still quite

clear in the 1-1-1 mass combination, particularly in the region of the

first peak in the CUD versus energy probability curves, in which the

probability for CID from the v = 1 state is some 40 times that from the

v = 0 state. At higher energies, the enhancement is less pronounced.

The vibrational enhancement is smallest for the 1-35-1 mass combina-

tion. In fact, up through about 0. 08 eV above dissociation, the prob-

. ability of CID from the v = 0 state is higher than that from the v = 1 state,

although this is reversed at higher energies. The probability of CID

from the v = 2 state is nearly always higher than that from the v = 0 and

v = 1 states for this mass combination, except at the energy of the

minimum in the v =2 CID probability versus energy curve.
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The vibrational enhancement of CID can also be seen by consider- 0

ing the rate constants for dissociation (k0 ) shown in Figs. 8 to 10.

There is a large increase in the rate constant with reagent vibrational

excitation, much of which can be attributed simply to the decrease in O

the energetic threshold for CID with reagent vibrational excitation. An

estimate of the magnitude of this effect can be obtained by consideration

W of the Arrhenius pre-exponential factors and activation energies asso-

ciated with the Arrhenius plots in Figs. 8 to 10. Such an analysis for

the dissociation curves is complicated by their nonlinearity, but the

curvature is sufficiently small that we may obtain reasonably good fits

to the calculated rate constants by assuming a linear Arrhenius plot in

the temperature range from 350-650'K. Pre-exponential factors b and

* activation energies E a for the exchange reaction and CID are given in

Table I. Considering the CID Arrhenius parameters for the 1-1-1 and

10-1-10 mass combinations, the pre-exponential factors increase and

* the activation energies decrease with increasing reagent vibrational

excitation, both effects contributing to an increase of the rates. For the

1-35-1 mass combination, the CID pre-exponential factors are all approxi-

mately equal, and the entire vibrational state dependence of the CID rate

constant stems from deci rases in the activation energy with increasing v.

In aU cases the activation energy for CID is far greater than the

corresponding classical energetic threshold for this process, the differ-

ence between these quantities lying in the range from 40-70 meV. This

indicates that not all of the reagent vibrational energy is available to

overcome the barrier to dissociation, resulting in an extra amount of

translational energy to do so.
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Vibrational enhancement of CID has been obtained in most previ-

ous calculations of the CID process; the present calculations further

support that result. 10, 11, 22 In one previous study, CID had been found

to be inhibited by reagent vibrational excitation, but this is now consid-

ered to be an artifact of the model used (impulsive force between the

incident atom and the target atom of the diatomic molecule in a collinear
23

collision. 2 3

The state-tc .-all exchange reaction probabilities show less varia-

tion with reagent vibrational excitation than do the CID probabilities.

This may be easily seen on examination of Figs. 5 to 7. The overall

similarity of the curves on each figure is striking. This particularly

true for the 10-1-10 mass combination in which there are three peaks in

each of the curves, with the energy spacing between the second and third

peaks far greater than that between the first and second peaks. The

vibrational enhancement of the rate of reaction is reflected in the rate

constants for reaction pktted (using solid lines) in Figs. 8-10. The

Arrhenius plots of these rate constants are linear over the entire 200-

650°K temperature range, and this range was used in the calculation of

the Arrhenius parameters, which are included in Table I. An examina-

tion of TAble II shows that the pre-exponential factor is essentially

independent of the reagent vibrational state. Thus, as in the case of

CID for the 1-35-1 mass combination, reagent vibrational excitation only

changes the activation energy for the exchange reaction. The decrease

in activation energy with reagent vibrational excitation is substantially

smaller than the added vibrational energy, however.
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One especially noticeable feature of the exchange reaction prob- O

ability curves is their different structure for the three different mass

combinations. For the 1-1-1 case, these reaction probabilities reach

I' their peaks and decrease to zero shortly above the opening of the disso-

ciation channel and increase slowly at higher energies. For the 1-35-1

case, their decrease after the peak is much slower, and there is no

* further increase beyond the first maximum, up to the highest energies

used in these calculations. For the 10-1-10 case, however, reaction

probabilities vary substantially with reagent translational energy, even

at the highest energies considered. It should be noted that oscillatory

behavior in the reaction probability versus energy curves for heavy-

light-heavy systems has been observed in the I-H-I1 2b and Cl-H-Cl 2 4

* systems. Thus, this oscillatory behavior appears to be a feature

common to systems with small skew angles.

It is interesting to consider the importance of vibrationally non-

S adiabatic processes, both reactive and nonreactive, as they are important

in the collisional vibrational excitation or relaxation relevant to experi-

mental studies of CID, especially shock-tube experiments. We will

restrict our attention here to vibrationally nonadiabatic exchange reactive

processes. In general, the probabilities of inelastic nonreactive processes

of the type

A'+ BA(v) - A' + BA(v'*v)

have been found to be fairly similar- to those of the corresponding

reactive processes
2 4

A' + BA(v) - A' B(v' ;d v) + A.

An examination of the relative importance of vibrationally nonadiabatic I
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and CID probabilities is of interest since CD can be considered as an p

extreme case of vibrational excitation to a nonbound state. 1

In general, nonadiabatic processes are seen from Figs. 2-4 to be

of only secondary importance (as opposed to CID and vibrationally adia-

batic processes). There is a correlation between the magnitude of CID

and vibrationally nonadiabatic processes in that for the case where CD

is the most likely (the 1-35-1 mass combination), the latter processes

are also the most likely. On the other hand, vibrationally nonadiabatic

processes are more likely for the 10-1-10 mass combination than they

are in the 1-1-1 case, however, even though CID is more prevalent in

*the latter case than in the former.

To help elucidate the relative importance of the exchange reaction,

both vibrationally adiabatic and nonadiabatic, and of CID, we have

obtained Arrhenius plots of the state-to-state reaction and CD rate

constants for the 1-35-1 case, and these are displayed in Fig. 11. It is

clear that of all the above mentioned processes, vibrationally adiabatic

reaction is the most likely. Further, it is not always true that CID

rates are smaller than all the other bound-to-bound rate constants, as
1

has been assumed in some models.1

Finally, we wish to consider the possible role of resonance pro-

cesses in this model system. The large barrier to reaction in this

system (relative to the dissociation energy) decreases the likelihood of

resonances in the 1-35-1 and 1-1-1 mass combinations. The reason is

that there will be no wells in the vibrationally adiabatic correlation dia-

grams, which are important mechanisms for the appearance of such 1W

resonances. 25, 26 This picture is known to be less appropriate for



-19-

heavy-light-heavy systems like the 10-1-10 mass combination being .

considered here, 12c, 26 which still leaves the possibility that there may

be resonances in the 10-1-10 case, in spite of the large barrier.

In fact, the first peak in the 1 versus energy curve for this sys- '0

tem can be shown to be associated with a resonance by construction of

an Argand diagram, 2 6 ' 27 which is displayed in Fig. 12. The switch-

* over from a clockwise to counterclockwise sense near 0. 15 eV total

energy (as the diagram is traversed in the direction of increasing

energies) makes the resonant nature of this process evident. 26,27 The

corresponding peak in the 0 versus energy curve does not appear to be

associated with a resonant process on consideration of the appropriate

Argand diagram (Fig. 13). The curve there has a clockwise sense over

* the entire range from 0.18 to 0. 21 eV total energy, signifying that there

is either no resonance at all or that if there is one, it is masked by a

direct process and thus unobservable from an Argand diagram. An

* analysis via the collision lifetime matrix eigenvalue technique 2 8 would

help elucidate this point.

We have performed quasi-classical trajectory calculations for the

1-1-1 mass combination and have found their results to be qualitatively

similar to the quantum mechanical ones (the corresponding curves are

plotted in Figs. 3 and 4 of Ref. 12b). The results are quantitatively

sufficiently different, however, that rate constants for CID calculated

using the quasi-classical probabilities were substantially different at

times from those obtained from the quantum mechanical probabilities.

As mentioned in the Introduction, very little work has been done

on the behavior of CID in reactive systems. Most of this work has been

. . _ _ i . -" :: " ' " - "- if" "i-! " ", I , i I , i- ' - ' I ." < - .0
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limited to quasi-classical trajectory calculations on the H + ' system

and its isotopic counterparts, frequently including systems in which

9 29there is an incident tritium atom. ' This case corresponds closely

to that studied in nuclear recoil experiments in which hot tritium atoms

are used. Simple calculations using kinematic (i. e., hard sphere)

models have also been performed, and have in general yielded satisfact-

ory agreement with both experiment and quasi-classical trajectory --

calculations. 4

That the masses of the colliding partners could have a major effect

on the CID has been seen for some time in nonreactive systems. Fan3 0

has performed collinear quasi-classical trajectory calculations on the

Xe + CsBr - Xe + Cs+ + Br system, and found that dissociation is much

more likely in collisions of Xe with Br than of Xe with Cs. A similar

behavior was found both experimentally and in quasi-classical trajectory

calculations by Tully et al. 15 Their results suggest that collisions lead-

ing to dissociative ion pair formation are near-collinear; that is, they

occur with their relative velocity roughly parallel to the alkali halide

axis, but with a small but non-zero impact parameter. Of particular

interest is the fact that the scattering in the Xe-RbI and Xe-CsBr sys-

tems was very similar, which suggests that it is the masses of the

atoms (mRb , mBr, mcs -mi) and not the details of the intermolecular

* forces that govern CID behavior. Further, in their experiments, Tully

et al. found that CID rates were found to vary more with changes in the

alkali halide molecule in Kr-MX collisions than in Xe-MX co llisions.

* Additional evidence of strong mass effects in CID was obtained by "

Shui et al. , 31 who found that a modified phase space theory, which

|!
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* normally predicts CID and three-body recombination rates fairly wel -0

for most systems, does not work in the case of HF and HCl dissociation

in Ar. Their method involved the use of trajectories calculated for

systems in which all the atoms and molecules had similar masses, and

they attribute the inaccuracy for these systems to different dynamics

than in most other cases.

* In the results obtained here, we have also seen grossly different

dynamics with changes in the atom masses. In particular, the dynamics

of the heavy-light-heavy system are substantially different from those
31

of the two others, lending support to the hypothesis of Shui et al.

described above. Because of our restriction to symmetric systems in

the present calculations, we have been unable to consider the dependence

* of CID on orientation (i. e., A + BC versus A + CB), as was considered

by F an,30 but we do hope to do so in the future.

6r

S'
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VI. SUMMARY AND CONCLUSIONS

We have calculated probabilities for CID and exchange reaction

for the collinear triatomic system A + BA on a model potential energy

surface for three different mass combinations, using the hyperspherical

coordinates coupled-channel technique. The mass combinations studied

are of the light-light-light, light-heavy-light, and heavy-light-heavy

types. Substantial vibrational enhancement of CID was seen, and in all

three systems CID was found to be most important for the 1-35-1 mass

combination and least so for the 10-1-10 mass combination. Arrhenius

plots of rate constants for CID are reasonably but not precisely linear,

and over the temperature range 350-600'K give rise to activation ener-

gies for CID which are substantially (normally 40-70 meV) greater than

the energetic thresholds.

Probabilities for the exchange reaction, both vibrationally adia-

batic and nonadiabatic, have also been obtained. In general, the shapes

of the reaction probability versus energy curves vary only slightly with

reagent vibrational excitation. There are substantial differences between

the curves for the different mass combinations, however. Arrhenius

plots of the rate constants for reaction are linear over the entire 200-

650°K range. For each mass combination, the Arrhenius pre-exponential

factors are approximately independent of reagent vibrational state; the

activation energies do decrease with reagent vibrational excitation, but

the magnitude of this decrease is substantially smaller than the added

reagent vibrational energy. Vibrationally nonadiabatic processes are

found to be less important than vibrationally adiabatic processes and

CID. Rate constants for CID are usually smaller than those for the

e "-"
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* exchange reaction, but this is not always true, especially at the upper

end of the range of temperatures considered.

We have shown that resonant processes can be important at ener-

* gies not far from dissociation in this system for the heavy-light-heavy 0

mass combination, although they do not necessarily occur for all

reagent levels.

* On the basis of quasi-classical trajectory calculations performed .

on the 1-1-1 mass combination, quantum effects, even for the weakly

bound system studied here with the light masses used, are fairly small.

Thus, classical mechanics should be able to give a reasonably good

qualitative picture of the dynamics in these systems, although not

necessarily a quantitative one.

0 We have recently modified the hyperspherical coordinate scattering

program to allow for the study of asymmetric systems (i. e., three non-

equivalent atoms), and hope to extend our studies of the CID process to

4 them in the near future.
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Table I. Parameters for rotating Morse cubic spline potential used

(notation is as in Ref. 17).

0 (deg.) eq~e 0
(bohr) (bohr')

0 5. 5993 1.600

15 5. 7968 1.544

25 6. 1774 1.458

30 6.4636 1.392

35 6.8284 1.321

40 7. 2669 1. 218

43 7. 5047 1. 142

*45 7.5666 1.127
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Table UI. Properties of potential energy surfaces for different mass

combinations.

Case I HIIi

Masses a 1-1-1 10-1-10 1-35-1

Skew Angle 600 24.620 88.410

Reduced Massb 0. 5774 2. 1822 0. 9726

Eigenvalues of
Isolated Diatomic (eV)

v =0 0. 0817 0. 0625 0. 0606

V 1 0.1885 0.1561 0.1524

v v2 c 0.2082 0.2055

a In units of the hydrogen atom mass.
bI

*Defined as g = mAmBmC / (M A InB + n)] 2 .

CThis system only supports two bound states.
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Table I. Arrhenius parameters for rates of reaction and dissociation.a

Mass vC Exchange Reaction Dissociation
Combination n bd  E e  nb d  E e

in bd Eae Inbd Ee

0 11.1 0.086 8.5 0.2131-1-1

1 11.2 0.025 10.3 0.072

0 10.0 0.098 3.9 0.208

10-1-10 1 10.1 0.046 5.7 0.104

2 13.1 0.015 7.4 0.082

0 11.7 0.014 11.0 0.215

1-35-1 1 11.6 0.063 10.9 0.133

2 11.4 0.024 11.2 0.061

a From 200 to 650K for the exchange reaction and 350 to 600°K for

dissociation.
b In units of hydrogen atom masses.

c
- Reagent vibrational quantum number.

In units of cm molec' secl.

e In eV.

IV
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* FIGURE CAPTIONS

Figure 1. Schematic plot of the coordinate system (1, 8) for the rotating

Morse cubic spline surface. S is the swing point from which the Morse

* oscillator is rotated.

Figure 2. Contour plot of the potential energy surface for the model

collinear triatomic system studied here (1-1-1 mass combination) in

Delves scaled coordinates R,, r, . The solid curves are equipotential

contours at the total energies (with respect to the dissociated system)

indicated at the high side of the figure. The dashed line is the path of

steepest descent from the saddle point. The polar coordinates p, a of

a general point P in this Ra, ra configuration space are also indicated.

Figure 3. State-to-state reaction and CID probabilities for the 1-1-1

mass combination as a function of relative translational energy and total

energy for the reagent vibrational states v 0 (top panel) and v 1

(bottom panel). Total energy is indicated by the common horizontal scale

(tic marks are on the top of each panel), while translational energy is

indicated at the bottom of each panel. Curves are for vibrationally

adiabatic reaction (solid line), vibrationally nonadiabatic reaction

(dashed), and CID (dashed-dotted). Arrows are drawn at energies at

which higher vibrational states and dissociation become energetically

ft allowed, and are labeled on the top figure, e.g., E, for v = 1, E2 for

v = 2, and Ed for dissociation.

Figure 4. State-to-state reaction and CID probabilities for the 10-1-10

mass combination as a function of relative translational energy and total

energy for the reagent vibrational states v = 0 (top panel), v = 1 (center
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(panel), and v =2 (bottom panel). Energies and arrows are as indicated

in Fig. 3. The solid curves always represent the vibrationally adiabatic

reaction probability, the dashed-dotted curves always represent CM,

and the dashed and dotted curves represent vibrationally nonadiabatic

reaction probabilities as indicated in the figure.

Figure 5. State-to-state reaction and CID probabilities for the 1-35-1

mass combination as a function of relative translational energy and total

energy for reagent vibrational states v = 0 (top), v = 1 (center), and v =

2 (bottom) panels. All markings are as in Fig. 4.

* Figure 6. Probabilities for reactive (solid curve), dissociative (dotted

curve), and nonreactive (dashed curve) processes as a function of rela-

€* tive translational energy and total energy for the 1-1-1 mass combination

for vibrational states v = 0 (top) and v = 1 (bottom). Arrows and energies

are as in Fig. 3.

Figure 7. Probabilities for reactive, dissociative, and nonreactive

processes as a function of relative translational energy and total energy

for the 10-1-10 mass combination for reagent vibrational states v = 0

(top), v = 1 (center), and v = 2 (bottom). Curves are as in Fig. 6;

energies and arrows are as in Fig. 4.

Figure 8. Probabilities for reactive, dissociative, and nonreactive

processes as a function of relative translational energy and total energy

for the 1-35-1 mass combination for reagent vibrational states v = 0

(top), v = 1 (center), and v = 2 (bottom). Curves are as in Fig. 6;

energies and arrows are as in Fig. 5.

Figure 9. Arrhenius plot of rate constant (in units of cm • molec - ' sec " )4 * ] I
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* versus inverse temperature for reactive and dissociative processes for -O

the 1-1-1 mass combination. Solid lines are drawn for rate constants for

reaction; dashed lines are used to indicate those for dissociation.

Absolute temperature is indicated at the top of the graph. "

Figure 10. Arrhenius plot of rates for reactive and dissociative pro-

cesses for the 10-1-10 mass combination. Lines have the same mean-

* ing as in Fig. 9.

Figure 11. Arrhenius plot of rates for reactive and dissociative pro-

cesses for the 1-35-1 mass combination. Lines have the same meaning

as in Fig. 9.

Figure 12. Arrhenius plot of rates of state-to-state reactive and disso-

ciative processes for the 1-35-1 mass combination, with the reagent in

its v = 0 (top panel), v = 1 (center panel), and v = 2 (bottom panel).

Lines have the same meaning as in Fig. 9.

W Figure 13. Argand diagram for the transition A + BC (v = 0) - A2B

(v = 0) + C for the 10-1-10 mass combination. Energies are labeled

every 10 meV and correspond to total energies. Points are marked

with an X every 5 meV. Arrows are drawn to indicate the sense of the -0

curve.

Figure 14. Argand diagram for the transition A'+ BA (v = 1) - A' B

(v = 1) + A for the 10-1-10 mass combination. All labeling is as in

Fig. 13.
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Collinear Quasi-Classical Traiectory Study of Collision-Induced

* Dissociation on a Model Potential Energy Surface. a)

Jack A. [aye b) and Aron Kuppermann
c)Arthur Amos Noyes Laboratory of Chemical Physics,

California Institute of Technology, Pasadena, California 91125

(Re ceived )

Quasi-classical trajectory calculations have been carried out at

energies above the threshhold for collision-induced dissociation

* fbr a model collinear atom-diatomic molecule system. Exact 0

quantum mechanical calculations have shown that quasi-classical

trajectories give a qualitatively correct picture of the dynamics

in this system. Trajectories leading to dissociation are found to

lie almost entirely in well defined reactivity bands, with the excep-

tion of a few occurring in a small chattering region in which the

outcome of the trajectory is extremely sensitive to its initial condi-

tions. The probability of dissociation leading to all possible dis-

tributions of the kinetic energy of the resulting atoms is obtained

and is shown to vary substantially with initial conditions (reagent

vibrational and translational energy). The form of these proba-

bility distributions is, to a major extent, determined by the posi-

tion and width of the reactivity bands. The different dissociation

reactivity bands are shown to be composed of different types of

trajectories. Part of the vibrational enhancement of dissociation

arises from the fact that the simplest possible trajectory leading

to dissociation (one which crosses the symmetric stretch line

once prior to the onset of dissociation) is not obtained withi

ground state reagents.
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I. INTRODUCTION

The collision-induced dissociation (CID) of diatomic molecules

A + BC -4 A + B + C (1)

is a process of great fundamental interest in chemistry, particularly

in the high temperature chemistry associated with shock waves, both

in the laboratory (1) and in interstellar space (2). The ab initio

calculation of CID rates has proven to be extremely difficult, as one

must have accurate methods for calculating the potential energy sur-

face for the collision, solving for the dynamics, and then integrating

the coupled rate equations to obtain expressions for the rate of disap-

pearance of the diatomic molecule.

The development of accurate methods for solving for the dynamics

has been especially difficult. Kinematic and quasi-classical trajectory

(QCT) calculations have been extensively used to study CID (3). The

number of studies incorporating quantum mechanical effects, either

by a semi-classical or a purely quantum mechanical approach, is much

smaller (4). Most of these studies have been restricted to collinear

collisions in which reactive collisions of the type

SA+ BC --. AB + C (2)

are not permitted. Non-collinear collisions in non-reactive systems

have been studied by the semi-classical method by Rusinek (5). Ex-

ceptions to this are three purely quantum methods in which reaction

and dissociation may compete (these are all restricted to collinear

collisions at this time): the wave packet approach of Kulander (6),

the hyperspherical coordinate coupled-channel method developed in-

* dependently by Kaye and Kuppermann (7) and by Manz and Rgmelt (8),

and the multiple collision approach of Beard and Micha (9) (which has

been applied only to a non-reactive system).

The availability of accurate quantum mechanical (QM) results for

CID has increased interest in QCT studies. In particular, Kaye and

Kuppermann (7) have shown that for the model system they studied,
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the QCT results were qualitatively similar to the QM ones. Since the

model system involves light masses (three hydrogen atoms) and

weakly bound (0.22 eV) molecules, quantum effects might be expected

to be important. This suggests that QCT calculations might be useful

predictors of the gross features of CID in reactive systems. One must

approach this with some caution, however, as in a non-reactive system,

Gray, etal. (10) have obtained major differences in the dissociation

probability between their QCT results and the QM results of Knapp

and Diestler (i1).

In order to help gain a better understanding of the dynamics of

this model system, we have carried out a reactivity band analysis

of the QCT results for this system. Such analyses have been exten-

sively applied to reactive systems below dissociation (12, 13) and have

also been applied to a non-reactive system above dissociation (10a).

We examine bandedness in the plots of trajectory outcome (reaction,

non-reaction, dissociation) as a funct;-an of initial vibrational phase of

the diatomic molecule and the relaU e kinetic energy. We also cor -

sider the variation of the vibrational action of the diatomic produ t of

non-reactive and reactive collisions with initial vibrational phase. %

In dissociative collisions we examine how the partitioning of the

energy among the three product atoms varies with initial vibrational

phase and reagent translational energy. We also examine individual

trajectories in order to understand the nature of the trajectories

comprising each of the reactivity bands.

*.

*.
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I. METHOD OF CALCULATION

* The QCT calculations have been performed using standard methods

(14). The model potential enrgy surface used has been described pre-

viously (7); we repeat here its basic features. It is of the rotating

Morse-cubic spline type (15), and has asymptotic Morse oscillator .4

parameters (16) of D = 0.22 eV, R = 1.40083 bohr, and P = 1.6-ie eq

bohr - . There is a barrier to exchange of 0. 14 eV. The surface is

plotted in figure one of reference seven, and is replotted later in

* figures 23-31, in which we show selected trajectories . The trajector-
-17ies are integrated with a time step of 5.41xiO sec. Energy is con-

served to four digits in these calculations. Integration of trajectories

began with the distance from the incident atom to the center of mass of e
the diatomic molecule at 12 bohr.

To determine dissociation probabilities and rough boundaries for

reactivity bands, we have calculated 100 trajectories per energy at

* regularly spaced (w/50 radians) values of the initial vibrational phase.

At selected energies, we have narrowed the phase grid substantially

near the boundaries of the reactivity bands. Below dissociation we

have calculated 50 trajectories per vnergy at regularly spaced (n/Z5

radians) values of the initial vibrational phase and successively

narrowed the grid near the band boundaries.

We have also determined the partitioning of kinetic energy among

the atoms after the collision. The quantity of greatest interest is the

fraction fD (X = A, B, C) of the available kinetic energy E' (the differ-xence between the total energy E of the collision and the dissociation

* energy D of the diatomic molecule) in dissociative collisions in each 4e

of the atoms at the end of the collision. In dissociative collisions, the

collision was defined to be over when both internuclear distances

RAB and RBC were greater than 6.0 bohr and were increasing with
time. The sum of the kinetic and potential energies of the AB and BC

pairs was each required to be greater than D . We have extendede
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this calculation to include this ratio for atom A in non-reactive colli-

sions (fA N) and atom C in reactive collisions (fcR). Plots of these

quantities vs. initial vibrational phase will connect smoothly to the
D D

fA and f curves across the boundary of the reactivity bands
A C

From the fractional energy vs. initial vibrational phase data, one may

calculate the probability c " d of the kinetic energy of atom A afterv
dissociation EA being between E A and E A + dE A for a collision in which

the diatomic molecule is in state v. This may be done by recognizing

that this is related to the width of the region of phase d in which EA

wililie between EA and EA + dE A

A A A

cc d

The (1/2w) factor is included so that c0 d(E A) will be appropriately

normalized:
max

cvdE A )dEA 1 
(4)

rmin-. EA
A

The limits of integration in eq. 4, EA r in and Emax have been

shown previously (17) to be E'/6 and ZE'/3, respectively, when the

masses of all atoms are equal. To simplify comparison of these par-

titioning probabilities from one energy to the next, we will plot the

dimensionless partitioning probabilities E'.cOr'(EA which wll be
v (A)whcwiib

indicated bY a bar over the quantity, vs. f for all values of the energy

E', in which case the abscissa will always run from 1/6 to 2/3.

* The evaluation ofthederivative in eq. 3 is complicated by the possi-

bility of minima or maxima in the EA vs. curves; hence 0(EA) may

be a multiply valued function of . We separate those regions in

which d/dEA is positive and negative and then separately obtain the

derivatives by a three-point finite difference procedure. The resulting

,'*
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derivatives are then used as an input for a cubic spline procedure wh

* which allows us to obtain approximate expressions for the derivatives

as a function of E We next sum the absolute values of the deriva-
A*

tives over all separated parts of each dissociative reactivity band and

over all such dissociative reactivity bands, and divide by Zr for norma-

lization. The resulting curve (called a partitioning probability curve)

may contain some numerical noise associated with the numerical

differentiation procedures; we have visually smoothed out the spline-

induced oscillations.

* -4

* -0

*- 0.
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I. RESULTS

Reaction and dissociation both occur in the energy range studied 0

here (up to 0. 25 eV above the dissociation energy of the diatormic

molecule). Plots of the reaction and dissociation probability obtained

from the trajectory calculations are shown for reagent states v = 0 and

v = I (the only ones possible) in figures I and 2, respectively. For

both reagent states, the reaction probability is zero below a thresh-
" hold energy, increases rapidly with energy to a large value (0.86 for

v = 0, 0.96 for v = 1) and then decreases to zero (for v = 0) or a value

just above zero (for v = t). It then increases monotonically with ener-

- gy. The dissociation probabilities for the v = 0 and v = I reagents be-

have quite differently from each other, however. In the v = 0 case, no

dissociation is observed until one is substantially (0. 08 eV) above its

energetic threshhold; as the energy increases beyond that, the proba-

bility increases slowly, reaching a value of 0. 27 eV at the highest

energy studied. For the v = I case, dissociation sets in at 0. 02 eV a

above its energetic threshhold, increases rapidly with energy to a

maximum of 0.33 and then decreases rapidly to 0.02 before again in-

creasing with energy up to a value of 0.39 at the highest energy stu-

died. It should be emphasized that all of these results are qualitative-

ly similar to the exact quantum mechanical results for this system

presented in reference 7.

We next examined bandedness in plots of trajectory outcome vs.

initial vibrational phase and relative translational energy. Plots of

the reactivity bands for this system are shown in figures 3 and 4

for reagent states v = 0 and I, respectively, for energies above the

threshhold for CID. Unlike reactivity band plots normally used in

studies of reactive atom-diatomic molecule collisions at energies be-

low dissociation, in which there are only two possible outcomes of a

trajectory (reaction or non-reaction), there are three possible outcomes
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here: reaction (R), indicated by the shaded regions of the figures;

dissociation (D), indicated by the speckled regions, and non-reaction

(N), indicated by the clear regions. The dissociative band centered

near 2. 0 radians and 0. 17 eV translational energy in figure 4 is en-

larged in figure 5.

Fairly well defined bands are seen to exist above dissociation.

hen one narrows down the phase grid substantially (to on the order of

0.002 radians), one may find blurring of the boundaries and formation

of a "chattezing". region (18), in which the outcome of the trajectory

varies strongly with small changes in the initial phase . This is most

severe below 0. 10 eV translational energy in the v i case, where the

high energy reaction and dissociation bands come to a "point" (see

figure 4). For example, at 0. 085 eV reagent translational energy, be-

tween 2.50 and 2.70 radians initial phase, there are four separate

dissociation zones, two reaction zones, and one non-reaction zone ob-

tained when the grid spacing of 0. 002 radians is used. The total width

of all the dissociative zones in this region is 0.52 radians. The disso-

ciation probability produced by this region is only 0.8%, which is far

smaller than the contribution at this energy from the large band cen-

tered at 5. 5 radians. Chattering is also seen near the boundary between

reactive and non-reactive bands at energies below dissociation.

We next consider the variation of the vibrational energy of the di-

atomic molecule resulting from reactive or non-reactive collisions. A

Normally, to examine this quantity one prepares plots of the action of

the diatomic moledule at the end of the trajectory as a function of ini-

tial phase at a sequence of energies (i0a, 12, 19, 20). At energies above

dissociation, one cannot calculate the action in the usual way, and one

is left with gaps in the action 7s. phase plots. Examples of these plots

are shown in figures 6 and 7 for the highest energies studied (reagent

translational energies of 0.388 eV for v = 0 and 0.2815 eV for v = 1).

Solid lines are used to indicate non-reactive zones and dashed lines
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are used to indicate reactive zones. The shaded regions mark those

regions of initial phase in which the trajectories are dissociative and

hence no action can be defined. In both of these figures, the dissocia-

tion is seen to occur in between regions of high final action in reactive

and non-reactive collisions (the maximum allowable final action in this

system is . 98 1). This is quite reasonable behavior, as for dissociation

* to occur, there must be more than the dissociation energy present in

each diatomic molecule, hence, the boundary between reactive or

non-reactive regions is expected to occur where the final action of

the diatomic molecule equals it maximum value.

A different sort of diagram is shown in figure 8, in which we plot

the final action vs. initial phase in a collision with v = 1 reagent and a

reagent translational energy of 0. 16i5 eV. Here there are three disso-

ciative regions. Two are sandwiched between the reactive and non-re-

active regions, and one is in the middle of the large non-reactive re-

gion. This dissociative region is part of the small dissociative band

located near 2 radians initial phase between 0.15 and 0. 20 eV reagent

translational energy in figure 4 (and enlarged in figure 5). As the ini-

tial phase is varied so it closely approached that in the dissociative

region, the final action increases, suggesting that the consideration

of dissociation as a limiting case of vibrational excitation is an appro-

priate concept.

There is a substantial difference between the product state distribu-

tion in collisions with v = I reagent at relative energies of 0.2815 eV

(figure 7) and at 0. 1615 eV (figure 8). At the higher energy, the likei-

hood of vibrational deexcitation, as measured by the ar ge region of

initial phase over which the final action is substantially smaller than

one, is much greater than at the lower energy. At the lower energy,

from -0. 5 radians to the second dissociative band (at 4. 15 radians),

the final action never becomes smaller than 0.8. Thus, increasing
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translational energy seems to lead to increasing vibrational non-

* adiabaticity in non-reactive collisions. The small likelihood of reac-

tion in these energy regions makes it difficult to draw any conclusions

concerning that process. A similar trend has been observed in the

exact quantum mechanical calculations on this system (21).

Farther evidence of the tendency towards vibrational adiabaticity

at low energies can be seen by considering a collision with v = 0

molecules at an energy (0. 178 eV relative translational energy) at

* which only non-reactive collisions occur - no dissociation or reaction

was found. A plot of the final action as a function of initial phase for

this collision is given in figure 9. The near adiabaticity may be seen

by noting that the total range of final actions in the figure is from -0. 1

to 0. 19, corresponding to vibrational energies of 0. 0639 eV and 0. 1079

eV, respectively (the zero point energy is 0. 0818 eV). Hence, at most

15% of the initial translational energy was converted to vibrational

energy in the collision. Another interesting feature of this figure is the

relatively complicated structure. In spite of the fact that all collisions

are non-reactive and nearly adiabatic, there is still some systematic

variation in the dependence of the final action on the initial phase.

Iro give some feeling for what happens when the boundary regions

between the reactivity bands become blurred, we present in figure 10

a plot of final action vs. initial phase for the collision with v i mole-

cule at a relative translational energy of 0. 085 eV for initial phases

from 2.40 to 3. 10 radians. In this region one sees five separate dis-

sociative regions, four of whicl are found between 2. 50 and 2.70 radi-

ans. These may be thought of as being distinct from the larger disso-

ciative band between 2. 90 and 3. 10 radians. The latter band is part of

the large dissociative band seen in the lower right hand portion of figure

4. The action vs. phase curves are fairly smooth in between the disso-

ciative regions. Away from the lower tip of the large dissociation and
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reaction band in figure 4, the boundaries are smoother. This figure

seems to represent, then, an upper limit to the complication of such a

diagram.

* -We next consider the partitioning of kinetic energy among the three

atoms in dissociative collisions and also the amount of kinetic energy

of motion of the free atom in reactive and non-reactive collisions. The

calculation of these quantities has been described earlier. Plots of

these quantities as a function of the initial phase are shown for initial

phases in or near which dissociation occurs for a variety of initial con-

ditions in figures 1i - 16. A few important features are observed in

these figures, and we review these here.

First, the curves are quite smooth in the dissociation region. At

the border between reactive and dissociative collisions, fC smoothly
RC

matches onto the fC curve, and at the border between non-reactive
and dissociative collisions, fA smoothly matches onto the fA curve.

In ali cases, the matching occurs at a value of the energy fraction
of 2/3; this has been shown to be the maximum value f or f can take in

A C
the dissociative region for a system of three equal masses. The

small values of fB are also a requirement of the mass combination

(for the case of three equal masses, f is required to be smaller than

1/6).

Second, two types of partitioning curves are seen. For those dis-

sociative bands sandwiched between one reactive and one non-reactive

band, f and f must both have regions where they are large (-2/3)
A C

and small (-1/6). For those bands sandwiched between two non-reac-

tive bands, the fA vs. phase curve must have a minimum. The pre-

sence of such a minimum will have a major effect on the partitioning

probabilities to be presented below. In theory, one might obtain disso-

ciative bands sandwiched between two reactive ones, but such bands

have not been observed

6 -DJ
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Finally, we present results for the partitioning probability
c d
cv defined earlier. These are shown in figures 17 - 22 for the six 0

sets of initial conditions for which F.nergy fractions were shown as a

function of initial phase. They all appear quite different from each

other, and we can rationalize much of their form simply from the re-

action and dissociation probabilities, the kinematics of the system,

and the existence of well defined dissociation bands in the reactivity

band plots (figures 3-5). We will extensively examine this issue in the

discussion section.

There are a few features of figures 17 - 22 which will prove to be

of most interest. First is the tendency of the partitioning probabilities

to have their maxima near the maximum allowable fraction of 2/3, al-

though this is not uniformly true (see particularly figure 21, 'in whic&h

the partitioning probability diverges at a fraction of 0. 25). Second,

in four out of the six cases studied, the partitioning probability has

divergences (figures i8 and Z1) or sharp peaks (figures 19 and 20).

Third, curves of the partitioning probability need not be smooth. If

there is more than one dissociation band at a given energy, each of

which has a very different slope or range of slopes in its correspon-

ding fractional energy vs. phase curve, by summing the contributions

from each band one may be adding one curve which is non-zero in the

range fI< f<f 2 and another which is non-zero in the range f1 ' < f <f2

Such a condition would result in a partitioning probability curve which

is discontinuous at £' and f '. Normally, this will not be seen, as
1 2

f f ' i/6 andf = f2' = 2/3. If this is not true for a given band,
1 1 2 2

discontinuities will be observed. This may be seen in figure 21, in 0

which the hump in the region 0.42 If <0.49 is due to the existence of

a narrcw dissociative band between 1. 9930 and 2. 0055 radians (not

shown) in which the fractional energy varies from 0.497 to 0.415.

Two additional narrow dissociative bands located from 1. 87 10 to -.

*.
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1.8758 radians and 1.9232 to i.92825 radians make essentially no con-

tribution to the partitioning probability because their narrowness means

that the magnitude of the derivative [d /dEA Iwill be small (unless, of

course, E is essentially constant over the band, as is true in the ad-A
ditional band mentioned earlier).

U-

|. •.
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IV. DISCUSSION

In this section we will consider first the implication of the banded- 0

ness of dissociative trajectories as seen in the reactivity band plots.

In particular, we will focus on how this bandedness, when coupled with

the calculated reaction probabilities and the pure kinematics of the

collision, can be seen to lead to the general structure of the partitioning

probability curves, such as those shown in figures 16 - Zi. We will

then consider the origins of the bandedness of the dissociative trajec-

tories, and show that a strong relationship can be. established between

the separate bands and different types of trajectories leading to disso-

ciation.

A. IMPLICATIONS OF THE DISSOCIATIVE REACTIVITY BANDS

Trajectories which lead to dissociation have been found to occur,

as a general rule, in well defined bands in the reactivity band plots

(figures 3 - 5). Exceptions to this trend are found for collisions of a

v = i molecule in which the reagent translational energy is in the range

from 0.07 to 0.10 eV. In this region, the trajectory outcome may

vary substantially with small changes in the initial phase of the diatomic

molecule. This is somewhat reminiscent of the observation of chatter-

ing regions in the final action vs. initial phase plots seen in reactive

atom-diatomic collisions (at energies well below dissociation), parti-

cularly the F + H 2 (18, 20) and Cl + HCl(22) reactions. Unlike in those

cases, where the outcome of the trajectory appears to be random, by

the use of a sufficiently small grid spacing (0. 002 radians), seemingly

smooth (but quite short) curves of final action vs. initial phase can be

obtairtd. We have found that only a few discrete regions of initial

phase lead to dissociative trajectories. In all cases, the dissociation

probability associated with these regions is quite small (no more than

i % of all collisions) and can thus be neglected to that accuracy in the

calculations of dissociation probabilities.
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In most cases, dissociative trajectories can be thought of as limi-

ting cases of reactive or non-reactive collisions giving rise to vibra-

tional excitation of products. This is seen in two interrelated ways.

For values of the initial phase only slightly different from those of the

trajectories which lead to dissociation, the diatomic molecules remain-

ing at the end of the collision will be highly vibrationally excited. f

one considers the fractional energy, such as that plotted in figure 10-

15, one sees that the curve for atom A smoothly matches onto thz or

atom A in non-reactive collisions and that for atom C smoothly m b-t-

es onto that for atom C in reactive collisions. This is not necess

true for dissociative collisions in the chattering region; as mentioue-d

earlier, such regions may give rise to discontinuities in the partition-
f-TI

ing probability curves.

The nature of the dissociative band (defined by the type of bands be-
tween which it is sandwiched at a given energy) will play a major role

in determining the appearance of the partitioning probability curves.

If the band is sandwiched between one reactive and one non-reactive

band, the partitioning probability curve should cover essentially all the

accessible region of energy fractions (1/6 to 2/3 in this case). If, on

*the other hand, the band is sandwiched between two non-reactive bands,

the partitioning probability curves will cover only a subset of the al-

lowable energy fractions and must have at least one place where they

diverge. There will be no possibility of obtaining energy fractions .. I

lower than that at the lowest divergence. Thus, in such cases the

partitioning probability curves for that dissociation band have the unu-

sual property that they are zero below the diverging value, at which

they jump discontinuously to infinity. At higher energy fractions, the

curve is continuous. Such curves are observed in figures 18 and Zi.

These figures demonstrate that the value of the energy fraction at which

the partitioning probability diverges can be quite close to its maximum

or minimum permitted value. Precisely at what values of the energy

L
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fraction the partitioning probability diverges will depend on the shape

of the dissociation and reaction reactivity bands at the energy being 0

considered. If, for instance, one is at an energy fairly near the

opening of the reaction band, the minimum ,-t the energy fraction vs.

phase plot will occur at a value of the energy fraction close to 1/6.

This is the case in figure 21 (the important reaction and dissociation

reactivity bands may be seen in figure 4). If the energy is such that

one is not close to the opening of the reaction band, the minimum wil

occur atvalues of the energy fraction close to 2/3. •

Certain types of curves of energy fraction vs. phase in dissociative

collisions which might occur have not been obtained. For instance, in

no cases were curves with more than one minimum or maximum ob-4.4
served. Hence, the partitioning probability diverges at one and only

one point if it diverges at all. As mentioned earlier, no dissociative

bands sandwiched between two reactive bands were observed. Such

bands would lead to partitioning probability plots opposite to those .0-

in figures 18 and 21 - there would be no possibility of energy fractions

above that at which the partitioning probability diverges of being popu-

lated. There seems to be no reason why such bands should not exist,

so we assume that their absence is a function of the particular poten-

tial and mass combination studied.

The fact that reactive processes are less probable than non-reac-

tive ones at the energies studied suggests that in dissociative collisions

one may be more likely to find kinetic energy distributions in which

atom A has the greatest portion of the available energy. This would

give rise to the partitioning probability being dominated by high energy

fractions. The range of energy fractions allowable is determined sim-

ply by the masses of the colliding particles, which explains why only

certain numerical regions of the energy fraction are allowed (17).

Changing the masses would, therefore, change the partitioning proba-

bilities for two reasons. First, the dynamics of the system would

.4



* ~ ~~~~~~ -- -- - - - - - - - -- - - - - - - - - - --- -- --

-18-

change, and second, the ways in which kinetic energy could be distri-

buted in dissociative collisions would be altered. I]

The structure of the reactivity band plots differs very strongly for

v = 0 and v = I molecule collisions, and this fact, coupled with the

definite manner in which the position and width of the reactivity bands

have been shown to determine the partitioning probabilities, suggests

that one might obtain substantially different kinetic energy distributions

from dissociation from the two reagent states at'the same total energy.

The same statement applies to translational energy. The simplest way

of obtaining such a case would be to locate an energy at which the dis-

sociation from v = 0 occurs totally from a band which is sandwiched be-

tween two non-reactive bands, while that from v = I occurs from one or

more bands sandwiched between one reactive and one non-reactive

band. Thus, not only may the outcome of the collision (reaction, non-

reaction, or dissociation) depend on the initial state, but the intimate

details of dissociation may also be a function of the initial state.

B. ORIGIN OF THE DISSOCIATIVE REACTIVITY BANDS

Formation of reactivity bands in atom-diatomic molecule collisions

has been observed in a variety of systems at energies below dissocia-

tion (12, 13); banding has also been observed in a non-reactive system

studied at energies above dissociation (1Oa). The present study marks,

to our knowledge, the first reactivity band study of dissociation in a

reactive system. In studying the origin of reactivity bands, we are

interested in getting a good physical picture as to what sort of trajec-

tories comprise each band. In particular, we focus on two questions.

First, we want to know whether each separate band corresponds to

different types of trajectories. Second, we want to know what happens

near the boundaries between bands, especially in the chattering regions,

such as that shown in figure 10, in which the outcome of the trajectory

is extremely sensitive to the initial conditions of the trajectory.
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Wright and Tan (12c) have shown in their study of the collinear

T + HT system on the SSMK sur ..- e (23) that the two lowest energy

reaction reactivity bands are comprised of different types of trajec-

tories. In the lower energy band, reactive trajectories cross the sym-

metric stretch line only once, while in the higher energy band, they

cross the symmetric stretch line three times. Representative trajec-

tories are shown in figure 8 of reference i2c. A similar correspon-

dence can be drawn between the two reaction reactivity bands in figure

4 for collisions of v = I molecule. For collisions of v = 0 molecule in

figure 3 we show only the high energy reaction reactivity band; there is

another band at lower energies respnsible for the large values of P0 R

at low energy seen in figure i. Trajectories comprising the lower

reaction reactivity band in the v = I case cross the symmetric stretch

line once (figure 23) while those in the higher band cross the symmetric

stretch line three times (figure 24). Reactive trajectories must cross

the symmetric stretch line an odd number of times; thus, these are the

simplest sort of reactive trajectories possible. The importance of

reactive trajectories which cross the symmetric stretch line more

than once indicate that a purely classical transition state theory

would seriously overestimate the rate constant for reaction at high

temperatures when these high energy trajectories become important

(24). The same behavior is seen in collisions of ground state mole-

cules; we do not show them here.

We next consider the nature of trajectories leading to dissociation.

We will focus our attention first on the single dissociation band for

collisions of ground state molecule and the two large bands for collisions

of v = i molecules. We will consider the small band for v = 1 isolated

in the large non-reactive band and the overall chattering region later.

Typical dissociative trajectories are shown in figures 25 - 27 for

the large band in v =0 collisions, the first band in v = I collision, and

L
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the second band in v = I collisions, respectively. In figures 25 and

27, the trajectory crosses the symmetric stretch line three times; in

figure 26 the symmetric stretch lines is crossed only once. This sug-

gests that the separate dissociation bands are each comprised of trajec-

tories crossing the symmetric stretch Line a different number of times,

just as was seen for reactive transitions. Things are not quite so sim-

ple in the dissociation case, however, as the trajectory need not cross

the symmetric stretch line an odd number of times. In fact, trajectories

which cross it twice have been observed in both v = I reactivity bands.

The last crossing of the symmetric stretch line may occur (as does

that in the trajectory shown in figure 26) at large values of the inter-

nuclear coordinates. Whether or not such a crossing takes place will de-

pend on the partitioning of energy in the three atoms. The final cros-

sing, then, may be thought to occur while the atoms are in the process

of dissociating, even if the crossing occurs at fairly small values of the

internuclear coordinates. Thus, the first dissociation reactivity band

in the reactivity band plot (in figure 4) may be thought of as being com-

prised of trajectories which cross the symmetric stretch line once

prior to the process of actually dissociating (during which they may

again cross that line). In the second dissociation band for v = i and

the only such band for v = 0, two crossings take place prior to the onset

of dissociation, after which a third crossing may occur.

These observations allow one to make a simply physical picture to

account for the observed vibrational enhancement of CM in this system:

The simplest trajectory which may lead to dissociation does not occur

when the molecule is in its ground state. It occurs only when the mole-

cule is in its excited state. Since more complicated trajectories appear

to contribute only at higher energies, low energy dissociation is pre-

vented in the ground state case. The qualitative agreement between the

quasi-classical trajectory calculations and the exact quantum ones re-

ported previously (7) indicates that this simple classical picture may
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be a reasonable one to use in attempting to understand the calculated

vibrational enhancement of CID in this system. 0

We next wish to consider the small dissociation band seen in figure

4 (and enlarged in figure 5) near 2 radians and 0. 18 eV reagent transla-

tional energy. A typical trajectory in this band is shown in figure 28.

This trajectory is quite different from the dissociative ones seen in

figures 25 and 27. This should not be surprising, however, as this

small dissociation band is imbedded in a large non-reactive band and

the other dissociation bands tend to be sandwiched between reactive and 0

non-reactive bands. Examination of non-reactive trajectories near the

boundaries between the non-reaction and dissociation reactivity bands

indicates that differences between the trajectories within them are

quite small and become important only at large values of the inter-

nuclear coordinates. This is a case, then, in which the final outcome

of the trajectory is not determined until well after the collision might

be thought to be finished (RAB large and increasing, RBC fairly small).

We finally consider the chattering region indicated in figure 9. In .

the region of initial phase from 2.5 to 2.7 radians, the outcome of the

trajectory varies greatly with small changes in the initial phase.

Ouch regions lu ve been observed in studies of reactions below dissocia-

tion, particularly the H + H (13) and F + H (18, 20) reactions. In
2 2

these regions, the trajectories become very complicated, frequently

bouncing back and forth many times in the strong interaction region of

the potential energy surface. Atom B is said to "chatter" between

atoms A and C, hence the name chattering region.

In this case, the trajectories in the chattering region are not overly

complicated. Three such trajectories are shown in figures 29 - 31

corresponding to initial conditions shown in figure 9. The initial phase

differs by 0.01 radians (0.57*) between each trajectory. The dominant

feature of the trajectories is clear trajectories in this region involve

* *
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motion more or less along the symmetric stretch line. The extreme

sensitivity of the trajectory outcome to the initial phase can, therefore,

be easily understood. Since, in moving along the symmetric stretch

line, the trajectory has, to a first approximation, forgotten from where

it was begun, it is reasonable that a small perturbation to the trajectory

could seriously alter its course.

At energies below dissociation motion exactly along the symmetric

stretch line would constitute that of a trapped trajectory - one which

could oscillate back and forth forever#, never leaving the interaction

region of the potential energy surface (25). In the language of Pollak

and Pechukas, such motion constitutes a trapped trajectory of the

first kind (26). These trajectories are frequently found at the boundary

between reactive and non-reactive bands in atom-diatornic molecule

systems at energies below dissociation (12, 13, 20, 22). At energies

above dissociation, trapped trajectories of the first kind (in which the

trajectory oscillates back and forth forever between two different

contours at the total energy) do not exist. A trajectory can change its

character continuously from reactive to non-reactive or vice versa by

going through an intermediate stage of dissociative trajectories. Thus,

the requirement shown by Pechukas and Pollak that trapped trajectories

must occur at the boundary between reactive and non-reactive bands at

energies below dissociation seems not to apply at energies above dis-

sociation (25). Nothing in these statements here, however, precludes

the possibility of formation of trapped trajectories of the second or

third kinds (26). No such trapped trajectories (or nearly trapped ones)

were observed, although we have not carried out a systematic search

for them.
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V. CONCLUSIONS

S We have performed a reactivity band analysis of CID in a model

collinear reactive atom-diatomic molecule system. Quasi-classical

trajectories are believed to provide a reasonable view of the dynamics

* in this system because of the qualitative similarity in the reaction and

dissociation probabilities calculated by trajectories and by exact

quantum mechanical calculations (7).

CID is shown to occur almost entirely in well defined bands, the
4P0exception being a small contribution from dissociative trajectories in

a chattering region in which the outcome of the trajectory is extremely

sensitive to the initial phase of the reagent molecule. Dissociation may

be thought of as a limiting case of vibrational excitation, as non-disso-

dative (reactive or non-reactive) trajectories with initial conditions

only slightly different from those leading to dissociation lead to a dia-

tomic molecule product which is highly vibrationally excited. In most

cases, dissociation reactivity bands are found sandwiched between

one reactive and one non-reactive band; in the rest, they may be

sandwiched between two non-reactive bands. In no instances were

* dissociative bands sandwiched between two reactive bands.

We have calculated the partitioning of kinetic energy among the

three atomic products of dissociative collisions and showed that these

quantities vary smoothly throughout the dissociation band. Kinematic

considerations require that most of the available kinetic energy go into

the end atoms (A or C). The fraction of the available kinetic energy in

the end atoms, as a general rulse, matches smoothly onto that of the

free atom in non-dissociative collisions (atom A in non-reactive col- 

lisions, atom C in reactive ones).

From the curves of energy fraction vs. initial phase we have been

able to determine the partitioning probability, that is, the likelihood of

the dissociation process to distribute the available energy in a given
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way. We have presented plots of the partitioning probabilities for six

different sets of initial conditions (reagent vibrational state and transla-

tional energy), and found a wide range of appearance of the probability

vs. energy fraction curves. We have shown that the general from of

the partitioning probability curves can be inferred solely by examina-

tion of the reactivity band plots.

The different dissociation reactivity bands found for the reaction of

vibrationally excited (v = I ) molecules have been shown to be comprised

of different sorts of trajectories. The band which dominates at low

energies (and shuts off at reagent translational energies above 0. 12 eV)

is seen to arise from trajectories which cross the symmetric stretch

line only once prior to the onset of actual dissociation, while the

higher energy band arises from trajectories which cross the symmetric

stretch line twice prior to dissociation. During dissociation, the

trajectories may or may not recross the symmetric stretch line an

additional time. The single dissociation band observed in collisions of

ground state molecules is seen to be made up of trajectories which

* cross the symmetric stretch line twice prior to dissociation. Hence,

the vibrational enhancement of CID can be thought of as being due to the M

inability of ground state molecules to dissociate by the simplest possible

trajectory; in that case dissociation is only possible by a more complex

procedure, which only becomes important at higher energies.

The chattering region is seen to arise from trajectories which at

some point follow the symmetric stretch line very closely. Since the

available energy is greater than the dissociation energy, motion along

the symmetric stretch line does not constitute a trapped trajectory.

The existence of a dissociation channel allows for a smooth transition

from reactive to non-reactive trajectories via an intermediate region of

dissociative trajectories.

Our analysis here has been restricted to a single model potential

4 -
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energy surface for a collinear collision. In reactive systems, changes

in the masses of the atoms have been shown to produce major changes

in the structure of the reactivity bands (i2b). Exact quantum mechani-

cal calculations on 1 isotopically' substituted versions of the model

system studied here (mass combinations j0-i-j0 and 1-35-i) indicate

that the effect of mass on dissociation is strong (22). Large changes

in the reactivity band structure can be expected. Thus, one must use

caution is attempting to generalize on the basis of the reactivity bands
'0'

for one system.

Removal of the restriction to collinearity might be expected to lead

to substantial changes in the reactivity bands (the model potential used

here is defined solely for collinear configurations; we are addressing

the general role of non-collinear collisions). In studies of the two and

three dimensional T + HT reaction, Wright (12e) has shown a disappear-

ance of the bandedness observed in the collinear reaction, which is due

to the diminished importance of multiple collisions (which involve mul-

tiple crossing of the symmetric stretch line) in non-collinear collisions.

Thus, in a more realistic (three-dimensional) system, the rich banded

* structure obtained here might be expected to be substantially blurred. t--

-0'
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in figure 29, except that the initial phase is 2.67 radians. All markings

0 are as in figure 23.

* 0
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FIGURE CAPTIONS

R
Figure 1. Probabilities for reaction P 0  (solid line) and dissociation

D
P (dashed line) in collisions of ground vibrational state molecules

0
as determined by quasi-classical trajectory calculations as a function

of the collision energy. The reagent translational energy E0 is indicated

on the lower abscissa; the total energy E (sum of vibrational and transla-
tional energy) is indicated on the upper abscissa. The arrow points to

the energy at which the molecule dissociates.

R
Figure 2. Probabilities for reaction P (solid line) and dissociation

D
P (dashed line) in collisions of vibrationally excited molecules as a

function of the collision energy. The e'ces and markings are otherwise as

in figure i.

Figure 3. Reactivity band plot for reaction and dissociation in collisions

of ground state molecule. Reactive (R) bands are indicated by shading;

dissociative (D) bands are indicated by speckling. The solid white region

is non-reactive (N). Both the translational energy E0 (left ordinate) and

the total energy E (right ordinate) are indicated.

Figure 4. Reactivity band plot for reaction and dissociation in collisions

of vibrationally excited molecule. Band type is indicated as in figure 3.

Axis labeling is also as in figure 3. No effort is made to accurately

portray the band structure in the "chattering" region.

Figure 5. Enlarged view of the small dissociative band (from figure 4)
in collisions of vibrationally excited molecule. AlU markings and axes

are as in figure 3.

Figure 6. Final action vf as a function of the initial phase 0 for a col-

lision involving a ground state diatomic molecule at a reagent translational

energy E 0 of 0. 388 eV. A solid line is used to connect results of non-

reactive trajectories; a dashed line is used to connect results of reactive
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trajectories. The shaded areas indicate those regions of the initial

* phase giving rise to dissociative trajectories,in which the action cannot

be defined in the usual way. N, D, and R indicate non-reactive,

dissociative, and reactive regions, respectively. The trajectory was

begun with the distance from atom A to the center of mass of BC being

12 bohr.

Figure 7. Final action vf as a function of initial phase for a collision
f 0i

involving vibrationally excited molecules at a reagent translational

energy E of 0.2815 eV. All markings are as in figure 6.
1

Figure 8. Final action vf as a function of initial phase 410 for a collision

involving vibrationally excited molecules at a reagent translational

energy E i of 0. 1615 eV. All markings are as in figure 6.

Figure 9. Final action vf as a function of initial phase 'o for a collision

involving ground state molecules at a reagent translational energy E

of 0. 178 eV. All markings are as in figure 6. Note the expanded

scale of the ordinate.

Figure 10. Final action vf as a function of the initial phase Co for a

collision involving vibrationally excited molecules at a reagent transla-

tional energy E of 0.085 eV. The initial phases are limited to the

chattering region described in the text and the regions to slightly lower

and higher initial phase. All markings are as in figure 6.

Figure 11. Energy fractions f (X = A, B, C) (defined in section II) as ax
function of the initial phase (P0 for the dissociative bands seen in collisions

of ground state molecules at a reagent translational energy E of 0. 388 eV.
0

A solid line is used for atom A, a dashed line for atom B, and a dotted line

for atom C. A dashed-dotted line marks the approximate boundary be-

tween bands. The curve for atom A is continued into the non-reactive

region and the curve for atom C is continued into the reactive region by
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a procedure described in the text. (a) the small band from 0. 90 to

1.03 radians initial phase; (b) the large band from 5. 10 - 6.60 radians.

Figure 12. Energy fractions fX as a function of initial phase k for

dissociative bands in collisions of ground state molecules at a reagent

translational energy E 0 of 0.233 eV. All markings are as in figure it.

Figure 13. Energy fractions f as a function of initial phase 00 for

dissociative bands in collisions of vibrationally excited molecules at a

reagent translational energy E of 0.2815 eV. (a) the small band fromi
0.25 to 0.31 radians; (b) the large band from 3.20 to 5.50 radians. All
markings are as in figure If.

Figure 14. Energy fractions fX as a function of initial phase Po for

dissociative bands in collisions of vibrationally excited molecules at a

reagent translational energy EI of 0. 1815 eV. (a) band from 2.04 to 2.12

radians; (b) band from 4.25 to 4.80 radians; (c) band from 5.32 to 5.36

radians. All markings are as in figure 11.

Figure 15. Energy fractions fX as a function of initial phase (o for

dissociative bands in collisions of vibrationally excited moelcules at

a reagent translational energy E 1 of 0. 1015 eV.

Figure 16. Energy fractions f as a function of initial phase 5o for

dissociative bands in collisions of vibrationally excited molecules at a

reagent translational energy E I of 0.07 15 eV. All markings are as in

figure 11.
c d

Figure 17. Partitioning probability C0 described in section II of the

text for atom A for dissociation in collisions of ground state molecules

* at a reagent translational energy E of 0. 388 eV.
0

c d
Figure 18. Partitioning probability c'0 for atom A for dissociation in

collisions of ground state molecules at a reagent translational energy

E0 of 0.233 eV. The probability is zero for values of the energy fraction

0.
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f below that at which it diverges (0. 58).
A

*c d 0
Figure i9. Partitioning probability -id for atom A for dissociation

in collisions of vibrationally excited molecules at a reagent translational

energy E1 of 0. 2815 eV.
c d '

Figure 20. Partitioning probability yd for atom A for dissociation

in collisions of vibrationally excited molecules at a reagent translational

energy E1 of 0. 1815 eV.
c d -

* Figure 21. Partitioning probability -8-1 for atom A for dissociation

in collisions of vibrationally excited molecules at a reagent translational

energy of 0. 1015 eV. The probability is zero for values of the energy

fraction f below that at which it diverges (-0. 25).
A A

c d
Figure 22. Partitioning probability c=I for atom A for dissociation

in collisions of vibrationally excited molecules at a reagent translational

energy of 0.0715 eV.

Figure 23. Plot of a typical reactive trajectory in the low energy reaction

reactivity band for collisions of vibrationally excited molecule. Trajec-

tory is for initial conditions of E, = 0.0715 eV and initial vibrational

phase of 3.4558 radians. The integration of the trajectory was begun

with R = 12. 8952 bohr. The trajectory is superimposed on a plot of the

potential energy surface for the system in Delves mass-scaled coordinate

* system. Contours are drawn every 0.06 eV starting from 0.02 eV up

to 0. 50 eV with respect to a zero of energy at the bottom of the well of

the isolatediatomic molecule. The X marks the saddle point for the

reaction. Note that there is only one crossing of the symmetric stretch

line.

Figure 24. Plot of a typical reactive trajectory in the high energy reaction

reactivity band for collisions of vibrationally excited molecule. Trajec-

tory is for initial condition of E 10.2815 eV and initial vibrational -.

I,
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phase of 6. 5649 radians. All markings are as in figure 23.

Figure 25. Plot of a typical dissociative trajectory in collisions

of ground state molecules. Trajectory is for initial conditions of

E0 = 0.388 eV and initial phase of 0.3142 radians. All markings are

as in figure 23.

Figure 26. Plot of a typical dissociative trajectory in the low energy

dissociation reactivity band for collisions of vibrationally excited mole-

cules. Trajectory is for initial conditions of E I = 0.0715 eV and initial

phase of 5. 3407 radians. All markings are as in figure 23.

Figure 27. Plot of a typical dissociative trajectory in the large, high

energy dissociation reactivity band for collisions of vibrationally excited

molecules. Trajectory is for initial conditions of E = 0.2815 eV and

initial phase of 5. 3407 radians. All markings are as in figure 23.

Figure 28. Plot of a typical dissociative trajectory in the small

dissociation reactivity band imbedded in the large non-reaction band for

collisions of vibrationally excited molecules. Trajectory is for initial

conditions of E, = 0. 1815 eV and initial phase of 2. 12 radians. All

markings are as in figure 23.

Figure 29. Plot of a non-reactive trajectory in the chattering region

shown in figure 10. Trajectory is for initial conditions of a vibrationally

excited molecule, E = 0.085 eV, and an initial phase of 2.65 radians.

All markings are as in figure 23.

Figure 30. Plot of a dissociative trajectory in the chattering region

* shown in figure 10. Initial conditions are the same as for the trajectory

in figure 29, except that the initial phase is 2.66 radians. All markings

are as in figure 23.

4 Figure 31. Plot of a reactive trajectory in the chattering region

shown in figure 10. Initial conditions are the same as for the trajectory
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each trajectory resulting in dissociation, and then appro-

priately averages over all trajectories leading to dissociation.

Their determinaion from quantum mechanical calculations is

more complicated; they may be obtained from scattering cal-

culations performed by the hyperspherical coordinates method.
4 ,5

In this work we present results for the partitioning

probabilities, that is, che probabilities of partitioning of

the available energy among the three atoms in dissociative

collisions by both quantum mechanical (QM) and quasi-classical

trajectory (QCT) methods in a model collinear atom-diatomic

molecule collision. We first review the methods by which

" these quantities are obtained. We then compare the QM and

QCT results and discuss the origins of the difference between

the results from the two methods.

2. Theor= -and Numer-ical- Methods

A. Quantum Mechanical Method

The calculation of bound-continuum total (dissociation)

probabilities by the hyperspherical coordinate method has been

outlined by us4 c and by Manz and Rmelt5 previously, The

basic formalism for the calculations of the partitioning

4c bprobabilities has also been outlined previously,4 ' We

present it here in more detail, emphasizing details appropriate

to its numerical implementation,

First we recognize that in dissociative collisions, there

is only one degree of freedom in the partitioning of the avail-

able energy among the three atoms, This is best expressed as
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1. Introduction

The distribution of energy among the various possible

degrees of freedom (electronic, vibrational, rotational, and

translational) in collisions of atoms or molecules with other

molecules has been a subject of intense research, both exper-

imental1 and theoretical,2 over the past 15 years. Most of

this work has been concerned with the determination of the

relative populations of the possible states of the molecular

product; additional work has focused on the relative rates

of formation of different electronic states of atomic products.

In atom-diatomic molecule collisions at energies above

the threshold for dissociation, collision-induced dissociation

(CID)

A + BC -A + B + C

may occur. In CID there are no molecular products; in elec-

tronically adiabatic collisions the only degrees of freedom

in the product are translational. Far less is known about

the dynamics of atom-diatomic molecule collisions at energies

above dissociation than at those below;3 in particular, little

attention has been paid to the partitioning of the available

energy among the three atoms in dissociative collisions.

This information can in principle be obtained from accurate

calculations on the collision process. Their determination from

quasi-classical trajectory calculations of the CID process is

straightforward. In these, one just calculates the kinetic

energies of the three atoms when the collision is over for
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each trajectory resulting in dissociation, and then appro-

priately averages over all trajectories leading to dissociation.

Their determinaion from quantum mechanical calculations is

more complicated; they may be obtained from scattering cal-

culations performed by the hyperspherical coordinates method.
4'5

In this work we present results for the partitioning

probabilities, that is, the probabilities of partitioning of

the available energy among the three atoms in dissociative

collisions by both quantum mechanical (QM) and quasi-classical

trajectory (QCT) methods in a model collinear atom-diatomic

molecule collision. We first review the methods by which

these quantities are obtained. We then compare the QM and

QCT results and discuss the origins of the difference between

the results from the two methods.

2. Theory and Numerical Methods

A. Quantum Mechanical Method

The calculation of bound-continuum total (dissociation)

probabilities by the hyperspherical coordinate method has been

outlined by us4c and by Manz and R6melt5 previously, The

basic formalism for the calculations of the partitioning

probabilities has also been outlined previously, 4 c 'b We

present it here in more detail, emphasizing details appropriate

to its numerical implementation,

First we recognize that in dissociative collisions, there

is only one degree of freedom in the partitioning of the avail-

able energy among the three atoms, This is best expressed as

9.
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the angle a, which is one of the two variables in the hyper- '*1

spherical coordinate treatment of collinear atom-diatomic
4a

molecule collisions. The kinetic energies of the three

atoms are related by the expressions

EA mB + m
- B cos2a (2a)E' M

Emc m mc) sin a
+m [ (-- cosa- B (2b)

E - m C m

EB mc cos a + (roB)C sin a (2c)

IE m + mC B

where E' is the total energy of the system measured with respect

" to that of three infinitely separated atoms at rest and M is

the sum of the atomic masses.

XnThe differential probability dod n(a) of dissociating

from a bound state An,, where A represents the reagent diatomic

molecule (AB or BC) and nX is its vibrational quantum number,

into a dissociation direction specified by the angular range

a to a + da is given by the ratio of the asymptotic radial

flux into that angular range to the total incident flux

tk n /p, where k is the wavenumber describing the initial

relative translation of the atom with respect to the diatom

in Delves mass scaled coordinates,7 and V is the Delves mass

(mAmBmC/M) :

* I
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da dXn X(ap) = d %n(a,p)d = Im [**( -)]pda . (3) 0

The dissociative part nd A (the only one of interest here)

T snof the total wavefunction *P A (see eq. (3) of ref. 2) may "

be written (at large p) as

Nd

' n = exp (iknp)(k (/k P n4)d n n Cnn p) n n4dn=l X

where index n denotes the discretized continuum channels,

An
R n the corresponding wave number, and S n X the bond to

continuum elements of the scattering matrix. If numerical

integration of the coupled channel equations were carried

out to p=-, the eigenvalues of all continuum state would be

identical (and zero), all their wavenumbers k would be equaln

to a common value k = (1/h)(2-E')1, and the factor (1/k)

exp (ikp) in eq. (4) could be moved outside the summation sign

In principle, the sum in eq. (4) is infinite; in practice it

is truncated at some value Nd sufficiently large for that sum

to have essentially converged to its correct value, The
An

dependence of dad X and of n (a;p) on p disappears asymptot-d ni

ically as p- .

From eqs. (3) and (4) we get, assumming the k and 0
n n

to be independent of p,



-5-

.1

Nd XR,
d (a,p)= Z 4n(a;p) ,(Ct;p) k n{A(P)[eSnRes +

n,~ n'=

+ im imSn + Bnn, E)[ReSn, I2n - Rn.St X eS nS ,
^]}d

(5)

where

An,(P) = - sin[(kn-ks,)p + +kcos[(kn-kn1 )P

Bnn,(p) = - 2Lcos[(kn-kn,)p] +knsin[(kn-kn,)p ]. (6b)

As mentioned earlier, as p4*, k k for all n, and there-n

fore

A ,nn'P*C k (7a)

nn' 0 (7b)

In this limit, eq. (5) reduces to the form given previously.4a '6

In all numerical calculations we will use eq. (5) and not its

limit as p -.

Rather than dealing with Ud A(a,p), in which one calculates

the probability per unit a range of forming products correspon-

ding to a given a, we prefer to consider the probability

An
ad X(EAp) per unit EA range of a dissociation in which atom

A has a kinetic energy EA with respect to the center of mass

1
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of the triatomic system. It is given by

0 Afl -- 1 d

an d' "~Xap

d )jE"AP) = dE I ad n(,p). (8)

These partitioning probabilities, when integrated over all

possible values* of EA give the total dissociation probability

*A

Emax

P X(p) = X(E ,p)dEA (9)din d_

A

Elin an max aedtrieand are determined by eq. (2a) setting a= max

an- (mBM/mAmc) and a=O, respectively, Since ad X(EA,p)

* has the dimensions of a reciprocal energy, it is convenient to
-An

define the dimensionless quantities ad X(fAP) and fA by

nX(f Alp) = E' An i

"d  ( Alp)

and (10)

f A EA/E' -

Using these dimensionless quantities, the integral in eq. (9)

*In eq. (8), ref. 4c, we mistakenly gave a value of 0 for the

lower limit of integration. This is true only in the limit

a eax - /2; otherwise EAin is a finite non-zero quantity.

.0
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becomes

fmax
Xn _a aXn,p d X~(P) d a (fAp)dfA (1

m fin

B. Quasi-Classical Method
-Xn

The details of the calculation of ad X(f A by the QCT
8

method have been described elsewhere; we briefly outline

them here. The equation for c dn A ) ' where the subscriptcthem) hretesusrp

c indicates classical mechanics, is

-Xn f ij 1

2-A) i (df /d O)i (12)

AV

where *0 is the initial phase of the vibration of the diatomic

molecule (in radians) and the summation is over all of the

regions of the initial range of phases which lead to dissoci-

ation, and in which EA varies continuously with 00. The

coefficiant (1/27) provides for correct normalization of
n (A

C d A)

C. Potential Energy Surface

The potential energy surface used is of the rotating-

9
Morse-cubic spline type, and has been briefly described

elsewhere.4 c For the mass combination considered (mA= mb= mc=

in H-atom mass units), asymptotically there are two bound

states, with energies of 0,0815 and 0,1885 eV with respect

to the bottom of the diatomic molecule well (which is 0.22

0_



-8-

eV deep). The Morse parameters1 0 of the reagent molecule

are De= 0,2 2 eV, 0 =1,6 bohr "', Req= 1,40083 bohr, Equi-

potential contour lines of this potential energy surface are

W displayed in Figure - of ref. 4c.

D. Numerical Methods

In the hyperspherical coordinate calculations, six even

and six odd basis functions were used. Comparison with

calculations done previously4 c using 10 even and 10 odd

functions showed that the present results are essentially

converged, The S matrix was approximately unitary, the devi-

ation from unitarity increasing as the dissociation probability

increases. Average values of this deviation are given in

Section 3, Integration was carried out to p= 190 bohr;

asymptotic analyses were carried out at 110, 130, 150, 170,

and 190 bohr. As discussed above, at finite p, the dissociation

probabilities P Xn and the partitioning probabilities ad X

vary slowly with p. The results we present are means of the

values at the five different projection distances. We also

indicate standard deviations of some of these quantities to

provide a feeling for the extent of their p dependence. Eq.

9 permits a consistency check between the values of Xd

and ad X, That equation was satisfied in general with an

accuracy of ±?,

The quasiclassical trajectory calculations were carried

out using standard methods, The integration time step was

5,41 x 10--"sec, Energy is conserved to four digits in these

...
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calculations. Integration of trajectories was begun with

the distance RA,BC from the incident atom to the center of

mass of the diatomic molecule of 12.0 bohr. Initially 100

trajectories were calculated per energy (and initial state),

corresponding to a grid of initial phase of IT/50 radians.

Near the boundary between dissociative and either non-reactive

or reactive regions of the trajectory final states the phase

angle grid was cut down to 0.01 radians. The derivative in

eq. (12) was evaluated by fitting a parabola to every group

of three points and differentiating analytically; we then

interpolated these derivatives by using a cubic spline

procedure.

3., ResaIts

We have calculated dissoc±gtion probabilities i as a

function of energy at a number of energies up to 0,25 eV above

dissociation when the reagent molecule is initially in vibra-

tional state v. Balues of dissociation probabilities, both

quantum and quasi-classical, are given for four energies in

Table 1. For the quantum results, we also present the worst

unitarities WU (the largest sum of the squares of the elements

in a given row or column of the _ matrix), All the quantum

mechanical results are averages (indicated by angular brackets)

over the five asymptotic analyses described above; standard

deviations are given for all quantities (indicated by the letter

*0 s). The relative smallness indicates that those quantities are

not a very sensitive function of the projection distance, We
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now focus attention on the lowest and highest of the energies

in Table 1: 0.04 and 0.25 eV, respectively,

Detailed data on the structure of the banding of the

QCT calculations are given in Table 2, in which we examine

the number, width, and properties of the separate regions

of the initial phase giving rise to dissociative trajectories.

From Table 2 it is clear that there may be more than one

region of initial phase leading to dissociation, and that

these regions may have minima in their plots of f v6.

initial phase, As may be seen from eq. (12), minima in these

plots give rise to divergences in c d "

In considering the quantum results it is useful to under-

stand how the individual terms of the sum in eq, (5) vary with

the indices n and n', For this purpose, we present in Fig.

d1 a plot of the transition probability P for going from the
vn

bound state v of the reagent diatomic molecule to the nth

continuum state as a function of n. These probabilities are

obtained from the corresponding matrix elements by the

expression

d isd 12 (13)
vn vn

dGenerally speaking, a larger P indicates a larger magnitude
vn

of Sd and correlates with a larger contribution to the summa-
vn

dtion in 5. We see that Pvn decreases appreciably (by more

than two orders of magnitude) as n increases froM i to 8, in-

dicating that to first order, the truncation of the sum in

eq. 5 at n=n'P8 should provide reasonable results, Note that
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in two of the three cases shown, there seems to be a strong

preference for dissociation to symmetric continuum states

(n odd).

p Plots of the quantum mechanical partitioning 
probabilities

d as a function of fA for E'=0.04 eV and 0.25 eV are presented

in Figs. 2 and 3. Because of the simplicity of this symmetric

collinear atom-diatomic molecule system, we may replace the

superscript XnA used previously by v, as that is the only

initial quantity which may be varied, Error bars are used

to indicate the standard deviations of the calculated par-

titioning probabilities from their mean. We deleted the

portion of the curve nearest to f= as here the calcula-

tions are unreliable, This is due to the form of the da/dEA

term in eq. (8);

d- [ EA (ETax EA)J- (14)

When EA = E.ax (for this mass combination, when fA =

this factor diverges and the resulting cv may be large, asd

may their deviations.

In Figs. 4-6 we present plots of the classical partition-
_v

ing probability c d for three sets of initial conditions:

E'=O.04 eV and v=0 and E'=0.25 eV and v=O and v=1, repec-

tively, Note that the vertical scales are different in all the

figures (except Figs, 4 and 5). In the ensuing section we

discuss the different forms of these curves Rs well as their

differences from the quantum mecharical ones,

L.
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4. Discussion and Conclusions

The plots of the quantum mechanical partitioning prob-
d

abilities B in Figs. 2 and 3 all show the same basic structure.
v5d

increases fairly smoothly as f increases from its minimumv A

to its maximum value. There does appear to be some structure

in these curves as seen by the existence of shoulders and

small maxima. The magnitude of the error bars suggests that

these oscillations might be real; from the data obtained one

should not discard the maximum in the Id curve near fA=0.55

in Fig. 3. It is premature to assign too much significance

to these oscillations for two reasons, First, it has been

seen in preliminary calculations that termination of inte-

gration at a small value of p leads to spurious oscillations

in the 5d curves, which decrease in magnitude as p is in-v

creased. Second, the small basis set used in the present

calculations may lead to errors in the resulting values of

vd Since the higher basis functions have more oscillations
v

than do the lower ones, their contribution to the summation in

eq. (3) may be such that, while its overall magnitude is small,

it could affect the fine structure of the curves. We note

-d adthat in general, the 0d and 0d curves have the same overall

behavior.

The plots of cav (Figs. 4-6) have a richer structure in

that the various curves are all fairly different, In Fig. 4

we see that c d increases fairly smoothly with fA' with the
e Isee

exception of a small dip near 0,52. In Fig, 5 d increases
cO 0

rapidly with fA' reaches a maximum, has one fairly rapid

S S.
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oscillation and then decreases slowly with fA' From Table 2

we see that there are two separate regions of initial phase

contributing to dissociation; analysis of the contribution

from each shows that only a small fraction (-10%) of the area

under the curve in Fig. 4 comes from the first (narrow) dis-

sociative region, and its contribution is nearly independent

of fA'

-dThe curve for c in Fig. 6 at the same total energy

differs appreciably from that for c c in Fig. 5. The large

spike in Fig. 6 arises because the plot of fA v. initial

phase has a broad inflection region in which dEA/d - 0.

-dThus, by eq. (12), a, must become large. This is a somewhat

unusual occurrence; more normally one finds minima in the 4P

plot of EA vA. 0, giving rise to discontinuous jumps in the

plot of 5d These spikes or discontinuities in -d are
cv, COcv

purely a consequence of the way in which the classical tra-

jectories behave, in particular the origin of well defined

reactivity bands, How the reactivity band structure in-

fluences the form of the partitioning probability curves is

discussed in detail elsewhere.
8

Because there is not necessarily any close relationiship

between the reactivity band structure for collisions involving

different reactant vibrational states,8 the classical par-

titioning probabilities for different reactant states at the

same total energies can have substantially different forms

(i,e, have spikes or discontinuities), The quantum mechanical
L
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partitioning probabilities appear to be fairly similar forI".
the different reactant states, however, Thus, it may be that

classical mechanics., while giving a reasonable description

for the likelihood of dissociation, gives an incorrect one

for the details for the dissociation process. It is quite

likely that in higher dimensionality, in which reactivity

9 band structure blurs or disappears altogether, 12 more

reasonable agreement between the quantum-mechanical and quasi-

scallical partitioning probabilities my be obtained,

In summary, we believe we have obtained reasonably

accurate (although probably not fully converged) probabil-

ities for the partitioning of kinetic energy among the dis-

sociation products for collinear atom-diatomic molecule

collisions by a quantum mechanical method on a model system.

We have compared these results to those obtained by classical

mechanics, and shown that they behave quite differently.
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CIzr Capi on s

dFIG. 1. Plot of individual bound-continuum transition probabilities Pdvn

vs. the index n of the continuum state for three sets of initial

collisions. E' = 0.04 eV, v = 1 (circles, solid line), E' =

0.25 eV, v = 1 (squares, dashed line); E' = 0.25 eV, v = 0

(triangles, dotted line). Values plotted are the means of the

values obtained from five asymptotic anlyses. Error bars

indicate one standard deviation about the mean. Where no

error bars are shown, they are sufficiently small that they

would be within the plotted symbol (circle, square, or triangle).

FIG. 2. Plot of the dimensionless quantum mechanical partitioning

probabilities adv as a function of the fraction fA of the available

kinetic energy going to atom A at an energy E' = 0.04 eV with

respect to three infinitely separated atoms. Curves are shown

for both the v = 1 (solid line) and v = 0 (dashed line)initial states,.

The values of U have been multiplied by ten before plotting.

All values plotted are the means of the values obtained from

the five asymptotic analyses; the error bars indicate one

standard deviation about the mean. The plot has been cut off

just above fA = 0.65 for reasons described in the text.

FIG. 3. Plot of the dimensionless quantum mechanical partitioning
ad

probabilities v as a function fA of the available kinetic energy

going to atom A at an energy E' = 0.25 eV with respect to three

infinitely separated atoms. All markings are as in Fig. 2.

FIG. 4. Plot of the dimensionless classical mechanical partitioning
c-d aaprobability av as a function fA of the available kinetic energy

v A1
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SuCaptions (continued)

going to atom A at an energy E' = 0.04 eV with respect to

three infinitely separated atoms.

FIG. 5. Plot of the dlmensionless classical mechanical partitioning
c-d

probability a. as a function fA of the available kinetic energy

going to atom A at an energy E' = 0.25 eV with respect to

three infinitely separated atoms.

FIG. 6. Plot of the dimensionless classical mechanical partitioning

probability c as a function of the available kinetic energy

going to atom A at an energy N' = 0.25 eV with respect to

three infinitely separated atoms.
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1. Introduction :,

Quasi-classical trajectory calculations have served an important

role in the last 20 years in helping one gain insight into the dynamics of

chemical reactions [1]. Information concerning the effect of reagent

vibrational, rotational and translational excitation, and the product

vibrational and rotational distributions has been obtained. In addition,

by looking at trajectories, one is able to get a good physical picture of

the collision process itself.

Such trajectory calculations have been particularly useful in the

development of simple qualitative models for chemical reactions that

allow one to understand how a change in a potential energy surface,

isotopic substitution, or reagent excitation will affect the collision

process [2]. These simple models and pictures are particularly useful

in interpreting the results of quantum mechanical calculations [3],

which, by themselves, give good values for reaction probabilities, but

do not provide any insight as to how chemical reactions occur [4].

*i In this paper, we briefly report the results of quantum mechanical

-calculations on the collinear system

Cl'+ HC1 (v) - Cl' + HC (v'< v) (la)

- C'H (v' < v) + C1 (lb)

on two potential energy surfaces. We focus in particular on one seem-

ingly surprising aspect of the dynamics: in vibrationally nonadiabatic

collisions, the probabilities, and thus the rates, of the nonreactive (la)

and reactive (1b) processes are almost equal, although this is not true

for vibrationally adiabatic collisions. We show that this result is



!;UASI-CLASSICAL TRAJECTORY ANALYSIS OF THE EQUIVALENCE

OF REACTIVE AND NONREACTIVE DEACTIVATION IN THE

COLLINEAR Cl'+ HCI SYSTEM*

Jack A. KAYE** and Aron KUPPERMANN

Arthur Amos Noyes Laboratory of Chemical Physics,.

California Institute of Technology, Pasadena, California 91125, USA

Received

Near total equivalence of the reactive and nonreactive processes in

vibrationally adiabatic collisions Cl'+ HCI(v) - Cl'+ HCI (V1 < v), Cl'H

(v' < v) has been observed in collinear quantum mechanical scattering

calculations. Analysis of reactivity bands and individual trajectories

in collinear quasi-classical trajectory calculations allows one to simply

understand why this should be so.

U

* * Research supported in part by the U. S. Air Force Office of Scientific

Research (Contract No. F49620-79-C-0187).

•* Work performed in partial fulfillment of the requirements for the

Ph. D. in Chemistry at the California Institute of Technology.

Contribution No.



-.3-

obtained approximately in collinear quasi-classical trajectory calcula-

tions, and that by analysis of reactivity bands and individual trajectories

we can understand why this should be so.

In Section 2 we briefly describe the method of calculation and the

potential energy surfaces used. In Section 3 we present the results of

the quantum mechanical and quasi-classical trajectory calculations. In

Section 4 we discuss and interpret the results obtained. -O
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2. Computational Methods and Potential Ene r Surfaces

The quantum mechanical calculations on reactions (1) were per-

formed using the method of hyperspherical coordinates [5, 6]. This

method allows one to treat heavy-light-heavy mass combinations with-

out difficulty, in spite of the small skew angle (13.590) between the two

arrangement channels in Delves mass-weighted coordinate system [7].

This technique has previously been used by two different groups to study 0

the reaction [5b, 6e]

I' + HI - I'H+I (2)

and similar results have been obtained, giving one substantial faith in

its applicability to these mass combinations.

In the calculations reported here, eight even and eight odd basis

functions were used at lower energies and 12 even and 12 odd at higher

energies. Convergence of the transition probabilities (estimated by

varying the basis set and integration stopping point) to * 0. 001 and flux to

. *0. 0002 was obtained at nearly all energies. The highest energy for

which calculations were performed was 1.24 eV above that of HC1 (v =

0). Standard methods were used for the collinear quasi-classical

trajectory calculations [1]. Trajectories were started with the distance

*'..L from the Cl atom to the HCl center of mass, RCi ' HCI at 12 bohr, and

were terminated when either distance, R C1 HCI or RCI9 HCI' was

more than 12 bohr.

Two different LEPS [8] surfaces were used. The molecular

parameters for HCI and C12 were those of Connor et al. 9]. Two values

of the Sato parameter were chosen (0. 138 for surface A; 0. 185 for

*
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surface B). These correspond to surfaces (i) and (ii) of Smith [10],

and have barrier heights of 6. 21 and 1.89 kcal/mole, respectively. -

Parameters and properties of the potential energy surfaces are shown

in table 1. The higher barrier height corresponds roughly to the

experimental activation energy [11] and also to the upper limit to the

barrier as predicted in ab initio calculations [12]; the lower barrier

* height is close to the predicted lower limit [12], and was found by

Smith to lead to better agreement between quasi-classical trajectory

calculations [10] and experiment [13] for the deactivation process

60 Cl + H(D)CI (v = 1) - C1 + H(D)Cl (v = 0). (3)

It is expected, then, that the actual barrier height is somewhere within

these two limits. The potential surface is plotted in Delves [7] mass-

weighted coordinates in figs. 4 and 5, where selected trajectories are

plotted.

p.12

0*

PO'

M-o
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3. Results

In fig. 1, we present a plot of the probability versus energy

curves for vibrationally nonadiabatic, nonreactive processes, defined

as process (la), with v = 2 and v' = 0 and I (P2V and P2V, respectively),

and the corresponding reactive processes p_ and P2 for calculations

on surface B. State-to-state rate constants are calculated from the

reaction probability versus energy curves, and these are plotted in the

form of Arrhenius plots for the four transitions in fig. 2. While the

shape of the probability versus energy curves and rate constant curves

are different on surface A, two of the most strildng features are seen

there also: the near equality of the corresponding reactive and non-

reactive probabilities and rates, and also the dominance of single-

quantum deactivating transitions. Hence, since the features of the 4

dynamics of interest here are common to both surfaces, we will

restrict further study to surface B.

The results of the quasi-classical trajectory calculations are

presented in fig. 3 for a series of translational energies (energy above

the v = 2 level). In the figure the final action of the diatomic product

(HCI or HCI') is plotted versus the initial vibrational phase of the HCI

* reagent. The reactive or nonreactive nature of the collision is also

indicated. In addition, the duration of the trajectory is plotted.

• One can clearly see that the trajectories giving rise to vibration-

ally nonadiabatic trajectories are localized in the two regions at the

boundary between the reactive and nonreactive bands. As the energy

* decreases, the boundary region between the bands becomes diffuse,

much more so for the activating transitions than the deactivating ones.

e J
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At the lowest energies, where quantum mechanically no vibrational

excitation is possible, the actions versus phase curve appears to be a

collection of random points. The near symmetry of the reactive and

nonreactive bands about a vertical line drawn through the center of the

gap between the bands shows that one could expect nearly equal amounts

of reactive and nonreactive products for vibrational deactivation, in

* agreement with the quantum mechanical results.

The funnel-shaped nature of the action versus phase curves near

the boundary between the bands demonstrates the classical nature of the

preference for single-quantum deactivations. Multiple quantum deacti-

vations can only occur for a very small range of phases about the center

of the gap. One can also see that the time for completion of the trajec-

0 tory has a minimum at the deactivation gap (due no doubt to the fast

nature of the exit process when all energy has been converted to trans-

lational energy) and a maximum at the activation gap. The fact that the

* trajectory time increases much more rapidly for activating collisions

than it decreases for deactivating ones, especially at lower energies,

suggests that for classically activating collisions the slowness is not a

purely kinetic energy effect; the trajectories giving rise to vibrational

excitation must be significantly more complex than those leading to

relaxation.

1S

I-- "D1"'
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4. Discussion and Conclusions

The increase in trajectory time and in the vibrational action of

the diatomic product across a gap in the reactivity bands has been

observed before by various workers in collisions of ground vibrational

state molecules (14,15]. Attention has seldom been directed to these

phenomena in collisions of vibrationally excited molecules, however [16].

Nevertheless, the theory and intuition developed for the ground state

case appears to carry over with some modification to the vibrationally

excited state case considered here [14].

Pechukas and Pollak [17] have shown that the sharp increase of

the final action and trajectory time versus phase plots across the band

gaps is due to the existence of "'trapped trajectories" that occur when

the initial phase is quite close to that of the center of the gap. They

have identified three different kinds of trapped trajectories (17], most

importantly the first kind, in which the mass point vibrates forever

between the two contours whose energy is that of the total energy present,

and the second kind, in which the mass point vibrates in a way such that

it touches only one of the energetically limiting trajectories. It is clear

that motion along the symmetric stretch line would constitute a trapped

trajectory of the first kind.

Our goal, then, is to determine what kind of trajectory, which

must not be terribly different from a trapped trajectory, gives rise to

vibrational deactivation. This trajectory must have the property that

it causes the mass particle to "forget" from which arrangement channel

it entered if there are to be equal reactive and nonreactive probabilities.

Since the trajectory time associated with vibrational deactivation
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is short, this trajectory cannot have that of an especially long-lived

complex (one spending a far greater time in the saddle point region of

the potential energy surface than a nearby less nonadiabatic trajectory).

Examination of a number of trajectories shows that the limiting trapped

trajectory for vibrational deexcitation is motion along the symmetric

stretch line. In vibrationally deactivating collisi ons at some time the

mass particle, the motion of which in Delves coordinates is equivalent

to that of the actual system [the single particle of mass iClinE

(2 mCl + mH)'*], lies along the symmetric stretch line beyond the

saddle point, and has its velocity directed along the line towards the

saddle point, (RCIH = RH+Cl = R*) At that time, the trajectory

obeys the equations

RcIu -H RH-CI > R* (4a)

dcI"H R-1< 0. (4b)

dt dt

A fairly typical trajectory resulting in substantial vibrational deactiva-

tion is shown in fig. 4b. Since this trajectory involves motion essen-

tially along the symmetric stretch line, it means that to a good approxi-

mation, the mass particle has forgotten its channel of origin. That this

type of trajectory leads to conversion of vibrational energy to transla-

tional energy has been observed by Wright et aL [15] in their study of

the H + H. reaction. This effect is not observed in adiabatic reactions.

A typical vibrationally adiabatic trajectory is shown in fig. 4a.

Examination of trajectories shows that trajectories leading to

vibratic.aaL activation are in some ways the reverse of those leading to
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vibrational deactivation. Early on the trajectory first undergoes near-

periodic motion near the saddle point (similar to a trapped trajectory

of the second kind). At some time later the mass particle climbs the

symmetric stretch line beyond the saddle point with its velocity directed

towards dissociation. At lower energies, eapecially below the quantum

mechanical energetic threshold for activation, the trajectory may then

become highly complicated, undergoing near-periodic motion character-

istic of motions of trapped trajectories of the first kind. For these

* trajectories roughly equal amounts of reactive and nonreactive products

should be obtained. A typical trajectory resulting in vibrational excita-

tion at high energy is shown in fig. 4c.

Three-dimensional trajectories have been calculated for the C1 +

HCI system by a number of workers [10, 19]. The calculations show

competitive rates for reactive and nonreactive deactivations. The

uncertainty associated with the assignment of final quantum numbers in

quasi-classical trajectory calculations makes a detailed comparison of

the state-to-state deactivation rates difficult. The trajectory calcula-

tions all indicate that in three dimensions, the dominant pathway for

vibrational relaxation is V -R energy transfer [10, 19], rather than

V -T, as is necessarily the case in collinear collisions.

The fact that the same equality of reactive and nonreactive deact-

ivation rates was obtained on the two potential energy surfaces suggests

that this effect is not immensely dependent on the surface used (for a

sufficiently high barrier, of course, the reactive probabilities will go
J

to zero at low energies). As this near-equality is not obtained for the

H + H reaction (although as the reagent vibrational state increases,

Lu
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the reactive and nonreactive deactivation rates do approach one another

[20]), it seems reasonable that this equality is a mass effect, arising

from the small skew angle. We hope to document this in the future.

In a future publication, we will fully discuss the results. of

classical and quantum calculations on these systems [21].

The calculations reported here were performed on the Dreyfus-

NSF Theoretical Chemistry Computer (VAX 11/780) which was funded

through grants from the Camille and Henry Dreyfus Foundation, the

National Science Foundation (Grant No. CHE78-20235), and the Sloan

* Fund of the California Institute of Technology, and on the IBM 370/158

computer of Ambassador College., Pasadena, California, for which we

express our appreciation.
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* Tablel 1

Parameters and properties of LEPS potential energy surfaces A and B. a)

HCI C12

P/bohr1" 0.9892 1. 0626

R /bohr 2.4060 3.7791e
*De/eV 4. 6258 2. 5169

A A 0.138

B 0.185

saddle point location/bohr i

A (1. 459, 1. 459)

B (1.443, 1.443)

* barrier height/ (kcal/mole)

A 6.21

B 1.89

HOI zero point energy/eV

A 0. 1838

B 0.1836

a).

aMasses used: m 34.6974 mH

C1 H*
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Figure CaptIons

Figure 1. Cubic spline fit to quantum mechanical probabilities of state-

to-state transitions versus reagent translational energy for vibrational

deactivation in collinear collisions of Cl + HC1 (v = 2): PV (solid line),

V(dashed line), PR (dotted line), and 0 (dashed-dotted line). Note

expanded vertical scale (full scale corresponds to probability of 0. 04).

Figure 2. Arrhenius plots of state-to-state rate constants for vibra-

tional activation in collinear collisions of Cl + HCI (v = 2). The rate

constants were calculated from the quantum mechanical transition

probabilities. The lines represent the same transitions as in fig. 1;

markers represent the points calculated. k; (O), k, (A), h; (+), w.

Figure 3. Plots of final vibrational action (left ordinate) versus initial

phase of reagent HCI (v = 2) in collinear collisions of Cl + HCI (v = 2).

In the region in which the curves are smooth, a solid line represents

reactive collisions and a dashed line represents nonreactive collisions.

In the non-smooth regions, open circles are used to indicate reactive

collisions and open squares to indicate nonreactive collisions. The

time of the trajectory (the time scale is on the right ordinate) is shown

by a dotted line in its smooth region and by closed circles elsewhere.

Curves are for translational energies of 0. 5 eV (top), 0. 3 eV (middle),

and 0. 1 eV (bottom).

Figure 4. Plots of typical trajectories (dashed-dotted line) superim-

posed on a contour plot of the potential energy surface (surface B) in

*0 Delves mass-weighted coordinate system. Contours are drawn every

0. 4 eV from 0. 2 to 3. 0 eV, measured with respect to the bottom of the

* -9
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HCl well. An x is drawn at the saddle point. The trajectories were

started at R = 24.75 bohr in the entrance channel (at the lower right)

and terminated in the exit channel (upper right), well past the limits of

the plot. Trajectories shown are for a translational energy of 0. 3 eV.

(a) Vibrationally adiabatic trajectory-initial phase = 0. 50 radians, final

action = 1. 981; (b) vibrational deactivating trajectory-initial phase =

2. 9293 radians, final action = -0. 115; (c) vibrationally activating

trajectory-initial phase 4. 09 radians, final action = 2. 821.
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A COLUNEAR QUANTUM MECHANICAL PROBABILITIES AND RATE CONSTANTS
FOR THE Br + HC1(u - 2,3,4) REACTION USING HYPERSPHERICAL COORDINATES •
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Calculations of quantum mechanical probabilities and rate constants for the collinear reaction Br + HCI (v = 2,3,4)
- BrH + CI, Br + HCI(v' < v) were performed using hyperspherical coordinates. Removal of vibrationally excited HO pro-
ceeds mainly by reaction to a nearly degenerate HBr state. Processes for which a large change in the internal energy occurs
have low probabilities.

I. Introduction liable scattering calculations, but one must also con-
sider the possibility of electronically nonadiabatic pro-

Reactions of halogen atoms (X) with hydrogen cesses. Single potential energy surface quasiclassical
halides (HY) of the type trajectory calculations on these systems have usually

been able to match experimental product state distri-
X+ Y-XH+Y ( butions, but have not had much success in duplicating
have been the subject of a great deal of experimental other experimental results such as isotope effects and
and theoretical work [I]. Exothermic reactions of the temperature dependence of rate constants [6].
this type produce inverted population distributions Quantum mechanical treatments of these reactions
of vibrational levels [21 and can thus be used as the have been limited because the traditional methods of
pumping step in chemical lasers [3]. The fairly small performing calculations for collinear atom-diatomic
energy difference between the ground (2P3/2) and molecule collisions [7-10] are not well suited for pro-
first excited (2P1/2) states of the halogen atom allows cesses in which a light atom is transferred between two
one to look at the possibility of electronically non- heavy ones. This difficulty has recently been overcome
adiabatic processes [4]. Endoergic reactions of this by the development of the collinear hyperspherical co-
type are known to be greatly accelerated by vibration- ordinates technique [1 1-191 that allows one to per-.
al excitation of the hydrogen halide reagent [5]. form reactive scattering calculations efficiently for

Theoretical treatments of these reactions are more heavy-light-heavy (HLH) systems. Studies of systems
difficult, however. Not only must one have an accu- of this type using this method have been applied pri-
rate potential energy surface in order to perform re- marily to exchange reactions of identical atoms (sym-

metric systems), such as [ 12,181
This research was supported in part by a contract (No.
F49620-79-C-0187) from the US Air Force Office of I' + HI "" I 'H + I . (2) •
Scientific Research.

• Presented at the 182nd National Meeting of the American In this work we report the results of calculations
Chemical Society, New York, New York, August 1981. on the asymmetric system Br + HC for the processes
W Work performed in partial fulfillment of the requirements
for the Ph.D. in Chemistry at the California Institute of Br + HCI(v = 2,3,4) -- BrH(v') + Cl , (3a)
Technology. Present address: Naval Research Laboratory,
Code 4780, Washington, DC 20375, USA. - Br + HCI(v'< v). (3b) -*
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These processes [5,201 and the reverse reaction [211

CI + HBr - CIH + Br (4) 0.4

have been studied experimentally and in three-dimen-
sional quasi-classical trajectory calculations [5,22,231. 0.3

A preliminary account of a collinear quantum mechan-
ical calculation on reaction (4) has been reported pre- 0 0.2-
viously [241.

In section 2 we briefly discuss the application of the
hyperspherical coordinate method to these systems and 0.,
the surface used. In section 3 we present and discuss the
results, and in section 4 we summarize the results and 0

conclusions. E"-/mev

Fig. 1. Probability of the reaction F + H2 (v 0) - FH(v = 2)
+ H on the Muckerman V surface as a function of reagent trans-

2. Computational method and potential energy surface lational energy. The solid line depicts results obtained previous-

ly; the points represent results obtained with the present hyper-
We have discussed our hyperspherical coordinate spherical coordinate method using up to eight basis functions.

method for symmetric systems previously [11-13],
and the modification of the method for asymmetric
systems is straightforward. R6melt [ 191 has also im- tions observed for the H + H2 system [ 11] is also seen
plemented such a modification and applied it to the for the F + H2 system; with sufficiently frequent
well-studied system F + H2 . The basic idea of the meth- changes of basis functions, results converged to ±0.02
od is to express the problem in the polar coordinates in the low-energy region (up to 0.10 eV translational
p, a and to expand the wavefunction in a set of eigen- energy) can be obtained with seven basis functions
functions of the hamiltonian at constant p. Two simple (five open and two closed, the latter correlating asymp-
changes are involved in going from symmetric to asym- totically to one closed state of each of the H2 and HF
metric systems. molecules). The hyperspherical distance pas at which

(a) Whereas in symmetric systems the integration projection on to the asymptotic diatom eigenfunctions
of the coupled channel equations can be done for the was performed was 10 bohr. Beyond this pas, no fur-
symmetric and antisymmetric solutions separately, ther improvement in the convergence of the probabil-
such a decoupling is no longer possible for asymmetric ities was obtained.
systems. Twelve to fourteen basis functions were used in all

(b) At large values of p, it previously sufficed to the calculations for the Br + HCI system reported in
project the wavefunction onto a basis set of the eigen- this paper. This is far more than needed in the lowest-
functions of one diatomic molecule only; two such energy region. For example, equivalent results were
projections, for HX and HY, are now required, obtained with only eight channels in this low-energy

We have verified the accuracy of our asymmetric region. Transition probabilities should be accurate to
hyperspherical coordinates program by performing ±0.002 for nearly all transitions and energies; in many
scattering calculations on the F + H 2 system on the cases they are probably accurate to better than -0.001.
Muckerman V surface [251, and achieved agreement The value of pas resulting in these accuracies was 26
with previous reaction probability [26] to within 3% bohr. The relative error in the reported transition prob-
or better at energies near the low-energy resonance that abilities of the order of 10- 3 or less was estimated to
occurs in this system. A plot showing probabilities for be -10%. Flux was normally conserved to better than
the reaction F + H2 (v = 0) - FHI(v = 2) + H obtained ±0.001. Deviation of the scattering matrix from uni.
by the present and previous methods is shown in fig. 1. tarity increased gradually with energy until at the high-
The rapid convergence of the hyperspherica coordi- est energies studied (1. 15 eV above the H Br ground
nate method with respect to the number of basis func. state) flux was conserved to ±0.008.
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Fig. 2. Equipotential contour plot for the Br + HCi system. 3
The solid curves are the contours and are equally spaced in " \\ ___2

I S increments of 0.4 eV from 0.2 to 3.8 eV. The zero of energy
is the bottom of the HCI well. The surface is plotted in the 0
Delves mass-scaled cartesian coordinate system. 0 0 15 20 25

P/bkv

The potential energy surface used is essentially the Fig. 3. Basis function eigenvaluesEn(p) as a function of the

same as the one used by Baer [241. It is a LEPS [271 hyperspherical coordinate p. Values of n for the curves are
r sshown at the top of the figure. The asymptotic states to which

surface, with all Sato parameters set to 0.154. The each of the curves correlates is indicated at the right of the

Morse oscillator parameters are those of Douglas et al. figure. The asymptotic eigenvalues for HCI(v = 2,3,4) are
[51. The surface has a barrier to exchange of I kcal/ almost degenerate with and lie slightly above those for HBr(v

mole. This surface is not designed to accurately mimic = 0,1,2), respectively.

the real one; inadequacies are suggested by the differ-
ence between the observed [21 ] and calculated [241 (b) The probabilities of transitions of a given kind

0 vibrational product state distribution for reaction (4). (i.e. reactive or non-reactive) decrease in average as the
A plot of the surface in the Delves mass-scaled carte- change in vibrational quantum number increases. This
sian coordinate system [9,11,28] is shown in fig. 2. may be seen especially clearly by considering the state-

to-state rate constants in fig. 5, where the large separa.
tion between the curves is indicative of the large differ-

3. Results and discussion ence in rate constants and thus reaction probabilities.
* (c) Probabilities and rates of transitions to near-

A plot of the energy eigenvalues of the basis func- degenerate product states are nearly equal; this may
tions as a function of the hyperspherical coordinate p be seen for three pairs of reactions:
is shown in fig. 3. The eigenvalues for the isolated HCI Br + HCI(v 3)
molecule corresponding to vibrational quantum num-
ber u = 2,3,4 lie very slightly above those for HBr

with v = 0, 1, 2, respectively. Transition probabilities
for reactions (3a) and (3b) are presented as a function
of reagent translational energy in fig. 4. Corresponding
Arrhenius plots of the thermal rate constants for these - BrH( = 1) + C, Br +HCI( = 3) ,
transitions are presented in fig. 5.

There are three major features of the dynamics, as -+ BrH(v = O) + Cl Br + HCI(v = 2)
may be readily seen by examination of figs. 4 and 5. - "

(a) The only transition probability that can achieve The fact that the only calculated transition proba-
a substantial value (greater than 0.1) is that which con- bility reaching an appreciable value is the one to the
serves internal energy, i.e. reaction to the energetically nearly degenerate I4Br state is in agreement with the
nearest HBr state. Thus, Br + HCI(u = 2,3,4) reacts results of experimental studies [51 of the removal of
predominantly to form HBr(u = 0, 1,2), respectively. HCI(u - 2,3,4) by Br atoms. In particular, those
The near-degeneracy of HCI(u) and HBr(v - 2) may studies have indicated that the greater rapidity of re-
be seen in fig. 3. moval of the v 3,4 levels of HCI than of the u =

576
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FiR. 4. Transition probabilities PR , and P, for the processes BT + HCI(v= 2,3,4) HBr(u') + Cl and Br + HCI(v' < u), respec-
tively, as a function of initial relative translational energy.

level must be due to chemical reaction [process (3a)] - X'H(v) + X for X = C1 [291 and X = I [18,29] vary
and not inelastic, non-reactive collisions [process (3b)]. substantially and irregularly with reagent excitation.
While we have not extended our calculations to ener- In contrast, for the H + H2 reaction, the differences
gies below that of the HBr(u = 0) level, as is necessary between successive probability versus energy curves
to calculate rates for the deactivation from HCI(u = 1), for vibrationally adiabatic reactions are much more
it seems quite reasonable to expect that that rate would regular [ 11]. The irregularity observed is most likely
be significantly slower than those shown here. The re- due to a combination of the HLH mass combination,
lative rates of removal of HCI(u) obtained here do not the low activation barrier, and the restriction to col-
agree with those determined experimentally, however, linearity. Three-dimensional quasi-classical trajectory
We calculate HCI(v = 3) to be removed more rapidly calculations performed on a similar but not identical
than either HCI(u = 2) Ur HCI(v = 4); experiments surface 123] show no such irregular behavior, while
show the rate to increase as u is increased from I to 4 one-dimensional quasi-classical trajectory calculations
[51. performed on this surface show an irregularity roughly

This disagreement is not surprising, however, as it similar to that of the quantum results reported here *.
has been seen in symmetric collisions that the proba- * We have performed collinear quasi-classical trajectory calcu- .
bility versus energy curves (rate constants) for the vi- lations for the forward and reverse reaction and will present
brationally adiabatic exchange reaction X' + HX(u) these results later.
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7/K ous exoergic X + HY reactions, which suggest that, at
,ooo 750 500 400 300 200 least at low energies, the reaction proceeds by attack

of the X atom on the Y end of the HY molecule, with
subsequent H atom migration and HX bond formation

10'- Hc,.2 as the HY bond breaks 121,30]."" -.-.-2) The low probabilities of multi-quantum transitions

o0 in non-reactive collisions and of reactive transitions to
all but the near-degenerate product level can be under-

"-. stood classically, as can the near equality of the prob-
, ----------- . ..abilities of reactive and nonreactive transitions to near

. . . . . . . degenerate states. This has been demonstrated in studies -,

of the Cl + HCI reaction [31 1. Transitions involving a
k large change in vibrational action (analogous to vibra-

B, .He,. 3) tional quantum number) occur at the boundary be-
ot tween reactivity bands [321 in plots of the final action

- versus initial vibrational phase. Near the boundary, the
,o 0 3 - final action varies rapidly with initial vibrational phase,

forming a cusp about some central boundary phase
S - _ . _ _ [31]. Transitions involving a large change in quantum

____________ _ ,number can only occur for collisions in a very limited
< to'range of initial phases and are thus unlikely. In sym-
V) metric systems such as Cl + HC1, these transitions in-

U volved motion essentially along the symmetric stretch
line. To a first approximation, then, the system has

a - - "forgotten" in which channel it began its motion, giv.

top .................. ing rise to the near equivalence of reactive and non-re-
active transitions to degenerate energy levels.

One must take great care in relating the results ob-
ot+ tained here to experimental ones. The collinearity re-

striction is undoubtedly a severe one and can be ex-
pected to lead to qualitatively incorrect results. The
surface used was chosen mainly for its simplicity and,

V &,HOW - 4) although it displays the correct energetics of the sys-
tem, it need not otherwise bear a close similarity to

__ the correct one. Indeed, Smith [231 performed three- -O
,p --------------- - -- dimensional quasi-classical trajectory calculations on a

related potential energy surface (LEPS with Sato pa-
rameters of 0.17) and could not get good agreement

lo 2 1.4 with experimental results. Finally, one must consider
2 3 4 5 the possibility of collisions involving more than one

DOO):K / T electronic potential energy surface. Their possible im-
FL 5. Artbenius plots of state-to-state rate constants , portance has been considered previously, but the results

k. for the processes Br + HCI(u) -- HBr( ') + CI and Br + are inconclusive.
HCI(v' < v). The line conventions correspond to those of fig. 4.

A substantial difference between collinear (theoreti- 4. Conclusions
cal) and experimental results for this system is quite
reasonable in the light of experimental results on vari- We have shown that the hyperspherical coordinate
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HYPERSPHERICAL COORDINATES IN COLLINEAR ATOM-DIATOMIC
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The hyperspherical coordinates method for studying the collinear

reactions of atoms and diatomic molecules is presented in some detail.

We apply the method to the low energy H + H2 and F + H2 reactions, and

focus on the behavior of the reaction probabilities and scattering matrix

element phases with the number of basis functions and the projection

distance (essentially termination point of integration). For N + H2

probabilities and phases converge quite rapidly with the number of basis

functions; the convergence of F + H2 is less rapid. In H + H2 one must

integrate to ~ 10 bohr to get nearly converged absolute phases which

agree well with those obtained from another method; relative phases

are obtained accurately at much smaller o. The phases for F + H,

appear to be converging (slowly) with projection distance, but not to the

values obtained from another method.
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1. Introduction

Quantum mechanical studies of chemical reactions have provided

substantial insight into the dynamics of chemical reactions, particularly

reactions of systems containing hydrogen atoms, in which quantum

mechanical effects are expected to play a major role. 1-3 Exact three-

dimensional quantum mechanical calculations are quite difficult to

perform, however, and have been limited to the reaction

I + H2 - H2 + N (1)

4-4W
at low energy. 4-6 Approximate three-dimensional quantum mechanical

78calculations have been performed on both this system and the reaction8

F +H2  FR +H. (2)

A far more tractable problem is that of a collinear collision of

an atom and a diatomic molecule. In such a collision,. the atoms are b

constrained to lie on a single straight line, which vastly simplifies the

formalism and reduces the numerical effort in solving the appropriate

Schrddinger equation compared to the three-dimensional case. 1 -3

A number of methods have been developed to study collinear atom-

diatomic molecule collisions within the framework of quantum mechanics,

including coupled channel methods based on natural collision coordinates 9

and on the hybrid Cartesian coordinate/modified polar coordinate

10method of Kuppermann. In addition, the two-dimensional partial

differential equation has been solved directly by finite element methods

(without expansion of the wavefunction in terms of some orthonormal

,." basis set). 1
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• While the coupled channel techniques have been used quite

successfully for a number of chemical reactions, they cannot be used

to study two interesting classes of reaction: Heavy-light-heavy (H-L-H)

reactions in which a light atom is transferred between two heavy ones,

and collision induced dissociation: (CID).

A +BC- A +B+C (3)

in which the reagent molecule is dissociated by the collision with the

incident atom. H-L-H reactions are difficult to treat because the large

amounts of skewing introduced into the potential energy surface by con-

version to an appropriate set of mass-scaled coordinates causes an un-

desirably large number of basis functions to be needed. For example,

* 12Baer 1 2 reported needing 40 states In his calculations on the reaction

C1 + HBr- CIE + Br. (4)

CID has been difficult to treat because the previous coupled channel

methods have expanded the wavefunction in terms of a basis set which

is zero in the dissociative (A * B + C) region of the potential energy

surface. Quantum mechanical studies of CID have been performed in

non-reactive systems, in which chemical reaction of the type

A +BC-' AB+C (5)

does not compete with CID1 3 (process 3). The finite element method

meitioned earlier has been applied to CID in non-reactive systems. 14

The first successful treatment of CID in reactive systems was the

wave-packet approach of Kulander, who solved the time-dependent

I
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Schri5dinger equation for the collision; 5

We have recently shown that collinear atom-diatomic molecule

collisions can be studied easily and efficiently by the methods of hyper-

spherical coordinates, 16 and that this method can be applied without

difficulty to both the H-L-H1 7 and C1D 1 8 systems which have previ-

ously defied easy treatment. A similar approach has been developed
by Manz et al.1 9 , 2 0 and applied to the H-L-H 9 and CID2 problem.

Our work 1 6 1 8 has shown that not only is the hyperspherical coordi-

nates method desirable because of its ability to treat heretofore diffi-

cult problems, but that for certain problems which can be treated by

the previous methods, fewer basis functions are needed when using

hyperspherical coordinates.

In this paper we will review the formalism of the hyperspherical

coordinates method, emphasizing those aspects of the method which

differ from the treatment of Manz et al. We will then present results

(reaction probabilities and scattering matrix element phases) for

reactions 1 and 2 and, in particular, how these results depend on

certain aspects of the numerical procedures. Finally, we will give an

assessment of the method in light of the results obtained.

* 2. Theo

In the hyperspherical coordinates approach to collinear atom-

diatomic molecule collisions, the two independent coordinates are the

polar coordinates p,, which are related to the usual Delves2 4 coor-

dinates R, r by the transformation

L



(R2 + r2) (R2 +r (6a) .

= tan'" (r /Ry), (6b)

where the indices ai and -y refer to the A + BC and AB + C arrange.-

ment channels, respectively. The Delves coordinates R., ra are

related to the r", the distance between the two atoms in the bound

molecular pair, and R" the distance from the free atom to the center

of mass of the diatomic molecule by the relationship

R. =aR (a)

r =a'r' (Tb)r t

where

a (8)
Ap-

where 1A represents the reduced mass defined in the usual way. Similar

expressions to (7) hold for R and r with the roles of a and y inV V"

Eq. 8 reversed.

In Delves coordinates, the hamiltonian for nuclear motion is

given by

N= - -- + a + V(R., r.); x =,y (9) '

where -e

L =mam In /M (10a)

*
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where

M=m a +m B +m

C.

is a reduced mass and is Independent of arrangement channel.

V (R., rX ) is the electronically adiabatic potential energy surface for

the triatomic system in >, coordinates.

In hyperspherical coordinates, the hamiltonian becomes

2  2 1 2a 1 8 ]+V(a,p). (11)

We desire a set of independent solutions {4n (p,a)} to the Schr6dinger

equation

H(p,a) 4n(p,na) ,.n(p) (12)

To solve this equation we proceed to expand the wavefanction ip"p, a)

in terms of a set of orthonormal eigenfunctions {n,(a; )} of the

potential along the line p =

N n
pn(p,a) =Pin:0 gn (P;)n (a;P) ' (13)

n =

where the p4 term is Included to remove the first derivative term

seen in eq. (11) from the hamiltonian, and N is the number of states

included in the calculation. Because the potential V(p,a) becomes

ifinite at a = 0 and =ama =tan' (m M/mam )i, (these corre-

spond to the interatomic distances RBC and RAB being zero, respec-

tively) the eigenfunctions ,( ;a ) satisfy the boundary conditions
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)= ,am ;) " 0 (14)

and the differential equation

2 __(2 (a , p

2 42 aa ' - (a; ) + V(a,) n (a,p) =En n(a,p). ()

As a result of these boundary conditions, this set of eigenfunctions is

infinite and discrete. t is this property of the basis set that allows one

to treat CID with no artificial "'discretization of the continum", as the

basis set is already discrete, even at energies above dissociation. Of

corse, we use only a finite number (N) of these basis functions. These

are calculated numerically by a finite difference procedure. 25

The differential equation to be solved then is, in matrix form,

- -- (p;') + W(p; P') g (P;') =(p; g(p; -), 1).P..

where
Wn, (p;) =(nIV(a;p) - (- 2/p) V(aH)In') (17a)

En, (p;5) =[E +,K2/8B0- E1(1)]2n n  (17b)

where I n') = n(a; P) and the angular brackets represent integration

over the angle a, and En( ) is the eigenvalue associated with the basis

function On,(a; ).

Integration of the eq. (16) begins from some value of p = Po which

is sufficiently small that all the eigenvalues of the eigenvectors

On(a ; Po) are sufficiently greater than the total energy E of the collision.

In this case we may assume the following initial conditions:

'9 .
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g(Popo) o (18a)

g (PO;Po) = I. (18b)

Given these initial conditions, eq. (16) is numerically integrated

by any convenient procedure (we have chosen to use the method of

Gordon)2 6 . Eq. (16) is formulated in the diabatic representation. One

* can formulate the problem In the adiabatic representation, in which the

basis functions vary continuously with p; in that case an equation very

different from (16) is developed; we have derived these equations in the

adiabatic representation elsewhere. 21

Two points concerning the numerical integration should be

mentioned. First, since closed channels [states whose eigenvalue

En(p) Is greater than the total collision energy E] are normally included

in the calculation (except in calculations of CM at large p, when all

states are open), one must prevent the exponential growth associated

with the closed channels. This is particularly severe in the hyper-

* spherical coordinates approach at small p, when all channels are

closed. This growth is prevented by the reorthogonalization procedure
28 " .

of Riley and Kuppermann. Second, since we are working in a diabatic

representation, we must modify the radial wavefunction g when changing

basis functions in order to maintain continuity of itn ;a) and its deriva-

tive 4 ,n(p,a) across the boundary. This is accomplished by the trans-

formation

=0 (p; K) (19a)

g,(p ;) 0' g, ( p; (19)PK-K
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where the overlap matrix Q is defined by the expression

OK, (fnP, +1)fl(O;PK)> . (20)

Ideally Q should be an orthogonal matrix; deviations from orthogonality

which will prodcue a loss of flux, are produced by use of a finite basis

set.

At large values of p, at which the regions of the potential energy

surface corresponding to bound AB and BC diatomic molecules are

localized to small and large a, respectively, we may project the bound

wave function 4 n(p,a) onto basis functions appropriate to the diatomic

molecules. These basis functions {Xn(r .R )} are solutions of the

differential equation

2 X1 (r ;A + V(r,X) X (r,;nt) En(Rx) x; (rx; (21)

In terms of this basis set, the waveftmction 1pn may be written

,n = O--k P, n (P; )Onn (a; ")  hn (r t,) X r n4 ;R~R (22)

ni 
)L

The matrix elements hN are evaluated from eq. (22) by taking

advantage of the orthogonality of the { XX (r x; R )} and assuming that

the basis sets {1} and {X} are orthogonal. This is a very good approxi-

mation when only bound states are considered; it is less good when

considering continuum states. The hn? are obtained from the expres-

sion
rmax

n mn d(hK r n
.

(r0; Xt)-e-2 n (p ; 
-) 

On (2X
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where p, r,, and R are related by eqs. 6.

We have discussed elsewhere27 the methods by which a g suitable

for use in eq. (23) is generated (one must correct for reorthogonaliza-

tions and renormalizations by the Gordon integrator). In many cases
the width of the channel rmin < r < rmax is sufficiently large that

one needs to use more than one polar coordinate basis set n(a;PK

in order to accurately represent the wavefbnction * n(p, ci). In that

case, the integral in eq. (23) must be broken up into m parts, where m

is the number of basis sets used in the integration from Pmin to p max

in polar coordinates, where

Pmin = . + (r.in (24a)

2 -2 Max (24b)pmax = R X + (r (24b

The new form of eq. (23) is

(rmax)X

h (R;RX)(r ;RxpT g)pd 1 )r~(~
IK rmin)X I m 91(;POn K X

min
where r and rlax now depend on the index K. Note that the overlap

matrix defined in eqs. (19) and (20) above insures that the integrand in

eq. (25) is continuous across the boundaries between basis sets.

An equation similar to (23) (or 25) is needed for the derivative

*_' of the matrix 1_. This is obtained by differentiating eq. 23 with

* respect to R the result is

I -D
S
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min Xn'(  n' n .-n ,

r.

dp
n Rn da TR~ k:

(26)

When more than one basis set is used in the projection region, the

integral in eq. (26) may be simply broken up into portions as in eq. (25).

The matrices h and h' are used in the asymptotic analysis and calcula-

tion of the R, S, and p matrices by the usual procedure. 3' 2 9

When including "continuum" states, that is those whose asymp-

totic eigenvalues are greater than the dissociation energy of the di-

atomic molecules, the continuum states are treated differently from

the bound states. This case is described in detail elsewhere.

In symmetric collisions (where atom C is identical to atom A),

the potential energy function V(a ,p) is symmetric about the line

a = m/2, and one can separately integrate symmetric and anti-

symmetric eigenfunctions, as there is no coupling between these two

sets of eigenfunctions. One could then project onto symmetric and

anti-symmetric linear combinations of the diatomic molecule basis

functions Xn(r4;R ) and evaluate symmetric and antisymmetric

scattering matrices could be evaluated and then combined to get reac-

tive and non-reactive ones. Instead, we have projected separately onto

bound states in each channel and evaluated a scattering matrix only once. .
We note that Manz et al 9 2 3 perform no such projection, using --

instead their polar coordinate radial wavefunctions (the equivalent of

*i
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our g) directly in their asymptotic analysis.

3. Results

We have extensively tested the hyperspherical coordinate method

on reactions 1 and 2 on the Porter-Karplus 3 0 and Muckerman 9 31

surfaces respectively. Calculations on these systems have been per-

formed previously in this laboratory 3 2 , 33-36 and we compare our

results with these previous results. A number of other workers have

performed calculations on reactions 1 and 2 also (referred to in refs.

1 and 2). The quantities on which we will focus our attention are
Rcertain state-to-state reaction probabilities (Poo for the H + H2

reaction; PR (for the F + H2 reaction) and scattering matrix element

phases (4 R for the H + H2 reaction; R for the F + H2 reaction). We

note that scattering matrix element phases are determined only modulo

2 w, and we make no effort to assign absolute values to any of the phases.

We will examine these reaction probabilities and scattering matrix

element phases as a function of two parameters: the number of basis

functions being included in the calculation and the stopping point of the

integration (essentially the value of R defined earlier).

A. The H + H2 Reaction

In Table 1 we present results for the reaction probability PR

in the energy range from 0.25-1.75 eV with respect to the bottom of
the H. well. We have results for 2 4 N < 6, where N is the number of

symmetric (and of anti-symmetric) basis functions used in the calcula-

tion. Results from a previous calculation (10 basis functions) are also

included. Numerical parameters used in the integration of eq. (16) are
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given in Table 2.

We have also obtained as a function of the projection distance

ppr, which is related to the distance Rx by the equation

2 -2 eq2

P R + r (27)
Ppr X X

where

=e a_. r- e (28)

These calculations were made with four even and four odd basis

functions for 5 < Ppr < 12 bohr. These probabilities are tabulated in

Table 3, along with the previous results. Averages and standard

deviations of the probabilities are given in Table 4. Both Tables 1 and

3 contain only a fraction of the energies at which we have calculated

probabilities and phases. The dependence of the scattering matrix

element phase 000 on the number of basis functions is indicated by the

data in Table 5, and on projection distance in Table 6. Additionally,

we have plotted O over a range of energies for the different projection

distances in Fig. 1, and in Figs. 2 and 3 we compare the phases

obtained here at energies near the first and second resonance with

those from extensions of the previous calculations on this system.

B. The F + H2 Reaction

In Table 7 we present results for the reaction probability Z in

the energy range from 0.0-0. 5 eV with respect to the zero-point energy

of HF, with points concentrated near the low energy resonance in this -

system. We have results for 7 < N < 9, where N is now the total

number of basis functions used in the calculations. Results from

*0,
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previous calculations on this system (13 basis functions) are also in-

cluded. Numerical parameters used in the integration of eq. (16) are

R
given in Table 2. In Table 8 we present results for PR as a function

of the projection distance Ppr for a calculation with nine basis functions.

We have examined Ppr = 10, 12, and 14 bohr. Note in the asymmetric

case req rrq , for simplicity we require req= req so .
Tables of the phase 0R of the scattering matrix element ! as a

function of basis set and projection distance are given in Table 9 and

Table 10, along with their values from calculations by the previous

method.

4. Discussion and Conclusions

From the results in the tables and figures, it is clear that ILI

reaction probabilities and scattering matrix element phases converge

quite rapidly with basis set for the H + H. reaction, while similar con-

vergence has not yet set In for the F + H. system. Convergence in the

former system is quite remarkable (and fast) at certain energies above

the threshold region, the probabilities sometimes vary by less than

0. 0001 on addition of basis functions. The general conclusions from
4

Tables 1 and 5 is that in the H + H2 system, with two closed channels

of each symmetry type one should have an adequate basis set, given the

frequency of basis set calculations (every 0.10 bohr) i1z I.

Convergence of the reaction probabilities with projection distance

is less rapid. The results scatter about an average value; the scatter

is fairly narrow, as we see from Table 4 that the largest standard

deviation of the I. is 0.007 (and that occurs essentially in the center
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of the first resonance, where data scatter might be expected to be

large). This convergence is impressive when compared to the results

of Rdmelt2 0 for this reaction on the Porter-Karplus surface. He

obtained good reaction probabilities by interpolating between the limits

of a highly oscillatory pI vs. integration stopping point (he did no

projection). For example, at an energy of 0. 0404 au even at p =

14 bohr, Pl is oscillating with amplitudes of * 0. 075 about the correct

probability. Since the major conceptual difference between his work

and our work is our inclusion of a projection;16,19,20 it appears that

it must be the projection which causes our transition probabilities to

reach their accurate values so rapidly.

While the reaction probabilities for H + H2 become more or less

0 independent of the projection distance at fairly small p, we see that the

same is not true for the scattering matrix element phases. These

approach a limiting value as the projection distance increases, and .

approach it uniformly from above (see Fig. 1). As with the proba-

biLities, the phases compare quite well with those of the previous

method (see Figs. 2 and 3). The probabilities for F + H2 behave fairly

well in terms of basis set and projection distance convergence (though .Po

not as well as those for H + H2 ). The phases (Tables 9 and 10) also

converge fairly well with respect to basis set, but do not appear to
O

converge rapidly as the projection distance increases. Further, they

do not appear to be approaching the correct phases (as determined in

the previous calculations). In particular, the small region of increasing

* phase with energy seen by the previous method is not reflected when

Ppr = 10-12 bohr, and is only minimally reflected when Ppr = 14 bohr.

$$

L
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We have no reason why the phases for FH2 should not be converging to

the seemingly correct answer.

The rapid convergence of the reaction probabilities and phases

with basis set bodes well for future development of hyperspherical

3'?coordinate methods for three-dimensional reactive scattering,, as it

is hoped that in that case a smaller number of basis functions might be

needed to treat 3D H + H2 than in the previous calculations. 5
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Table 1. H + H Reaction Probabilities as a Function of Basis Set.

Pa)
No 2 3 4 5 6 prey.

E/au. method

0.0120 0.1802(-6) 0. 3468(-6) 0. 2467(-6) 0. 2620(-6) 0. 1390(-6) 0. 1985(-6)

* 0.0140 0.3526(-3) 0.3179(-3) 0.3183(-3) 0.3070(-3) 0.3142(-3) 0.3256(-3)

0.0160 0.3135(-1) O.3103(-1) 0.3103(-1) 0.3101(-1) 0.3107(-1) 0.3052(-1)

0.0170 0.1589 0.1569 0.1569 0.1568 0.1569 0.1554

0.0180 0.4740 0. 4596 0.4596 0.4596 0.4596 0.4597

0.0190 0.8059 0.7842 0.7843 0.7843 0.7843 0.7876

0.0210 0.9902 0.9838 0.9836 0.9836 0.9836 0.9860

0.0240 0.9959 0.9968 0.9969 0.9969 0.9970 0.9976

0.0300 0.9096 0.9289 0.9301 0.9302 0.9302 0.9306

S0.00320 ..b) 0.1797 0.1768 0.1765 0.1770 0.1738

0.0340 -- 0.7110 0.7121 0.7115 0. 7115 0.7127

0.0380 - 0.5187 0.5219 0.5222 0.5218 0.5210

0.0420 -- 0.2991 0.299 0. 3010 0.3011 0.2998

0.0450 -- 0.2496 0.2251 0.2254 0.2253 0.2208
0.0470 .. .. 0.3516 0.3557 0.3558 0.3546

0.0480 .. .. 0.7050 0.7120 0.7120 0.7037

0.0490 .. .. 0.1329 0.1331 0.1328 0.1288

0.0500 .. .. 0.1131 0.1153 0.1155 0.1158

0.0530 .. .. 0.1339 0.1330 0.1329 0.1361

0.0570 .. .. 0.1157 0.1161 0.1160 0.1217

0.0610 .. .... 0.6369(-1) O.65M3(-1) 0.6452(-1)
0.0640 .. .... 0.1193 0.1206 0.1161

a) The nmber enclosed in paretheses is the power of 10 by which the non-enclosed

number should be multplied.

b) Lack of unitartty of the scattering matrix indicated that this calculation was unreliable.
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Table 2. Numerical Parameters for Integration of Eq. 16.

H + H.A F + H2

Ppr. = 0bohr 10 bohr

= 0.25 bchr 0.3 bohr

rmax  4.0 bohr 3.3 bohr

* = 1.5 bohr 2.0 bohr

-0b) = O.bohr 0. 1 bohr

-c) 250 300-380
-NPTd) 150 150

2 e
a) 2 ( + r where r = a rleq

b) Distance between successive basis set calculations.

c) Minimum mber of points in eigenfumctions 4n(a ;

d) Number of points in eigenfunctions Xn L(rA; R)

I-

I-

I.

* *
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Table 4. Average and Standard Deviation of H + H2 Reaction

Probabilities. (From Table 3.)

std. dev.

E/au. PD) std. dev. (PoO)

0.012 2.826(-7) 8.12'(-8) 28.8%

0.014 3.204(-4) 6.193(-6) 1.93%

0.016 0.03044 0.00049 1.61%

0.017 0.1557 0.0024 1.55%

0.018 0.4659 0.0052 1.12%

0.019 0.7853 0.0057 0.72%

0.021 0.9858 0.0020 0.20%

0.024 0.9976 0.0007 0.07%

0.030 0. 9324 0. 0029 0.32%

0.032 0.1792 0.0010 3.89%

0.034 0.7116 0.0015 0.21%

0.038 0.5249 0.0038 0.72%

0.042 0.3018 0.0014 0.'46% ,

0.045 0.2213 0.0025 1.12%

0.047 0.3523 0.0012 0.33%

0.048 0.7071 0.0026 0.37%

0.049 0.1315 0.0024 1.86%

0.050 0. 1124 0. 0010 0.90%

0.053 0.1254 0.0014 1.08%

,- -- - - - -,
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Table 5. H + H2 Phases as a Function of Basis Set

4R /radians

N= 2 3 4 5 6

e /au.

0.021 8.149 8.083 8.082 8.082 8.082

0.024 5.787 5.787 5.784 5.784 5.785

0.026 4.338 4.323 4.319 4.319 4. 319

0.028 2.949 2.950 2.946 2.946 2.946

0.030 1.717 1.705 1.701 1.700 1.700

0.0305 1.506 1.427 1.423 1.422 1.423

0.031 1.197 1.183 1.180 1.180 1.180

0.0315 0.675 1.021 1.022 1.021 1.021

0. 32 0.196 0.715 0.577 0.581 0.579

0.0325 .. a) -0.291 -0. 259 -0.260 -0.259

0.033 -- -0.454 -0. 442 -0. 443 -0.443

0.0335 -- -0.608 -0.664 -0.664 -0.664

0.034 -- -0.916 -0.913 -0.914 -0.914

0.035 -- -1.431 -1.431 -1.431 -1.431

0.036 -- -1.958 -1.960 -1.961 -1.961

0.038 -- -2.971 -2.977 -2.989 -2.989

0.040 -- -3.999 -3.998 -4.000 -4.000

a) Lack of unktarity of the scattering matrix indicated that

this calculation was unreliable.

90
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0 Table 7. F + H2 Reaction Probabilities as a Function of Basis Set "

PORa)

N= 7 8 9 previous
E €/au. method 0

0.010 0.1290(-2) 0.1286(-2) 0.1357(-2) 0.1245(-2)

0.0102 0.4354(-1) 0.4363(-1) 0.4363(-1) 0.4457(-1)* + S
0.0103 0.1834 0.1843 0.1962 0. 2038

0.0104 0.3856 0.3882 0.402 0.4108

0.0105 0.3752 0.3765 0. 3744 0. 3550

0.0108 0.2611 0.2621 0.2666 0.2630

0.011 0.2537 0.2545 0.2602 0.2562

0.012 0.2438 0.2453 0.2404 0.2338

0.013 0.1497 0.1476 0.1456 NAc)

0.014 .. b) 0.7077(-1) 0.6927(-1) NA

0.015 0.5563(-1) 0.6106(-1) 0.6029(-1) 0.5717(-1)

0.0175 -- 0.5529(-1) 0.5738(-1) 0.5477(-1)

0. 020 -- 0. 3539(-1) 0. 3623(-l) 0. 3493(-1)

0.025 -- 0.1162(-2) 0.1154(-2) 0.1101(-2)

a) The number enclosed in parentheses is the power of 10 by which the

non-enclosed number should be multiplied.

* b) Lack of unitarity of the scattering matrix (> 10%) indicated that this

calculation was unreliable.

c) Not available.

* -0e

oS
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Table 8. F + H. Reaction Probabilities as a Function of

*: Projection Distance

pRa)

p 10 12 14 previous

method

0.010 0.1357(-2) 0.1205(-2) 0.1151(-2) 0.1245(-2)

0.0101 0. 8221(-2) 0. 7622(-2) 0.7897(-2) 0. 8036(-2)

0.0102 0. 4363(-1) 0. 4445(-1) 0. 4128(-1) 0. 4457(-1)

0.01025 0. 9666(-1) 0. 9895(-1) 0. 9666(-1) 0. 9690(-1)

0.0103 0.1962 0.1969 0.2010 0.2038

0.010335 0.2870 0.2842 0.2908 0.3044

0.010365 0.3560 0.3502 0.3560 0. 3711

0.0104 0.4025 0. 3941 0. 3963 0. 4108

- 0.0105 0.3744 0.3719 0.3701 0. 3'77'7

0.0106 0.3176 0.3199 0.3197 0.3081

0.017 G. 2839 0.2825 0.2786 0.2709

0.0108 0.2666 0.2641 0.2659 0.2630

- 0.011 0.2602 0.2660 0.2621 0.2562

0.0114 0.2608 0.2623 0.2618 0.2597

0.0118 0.2517 0.2475 0.2528 0.2461

0.0122 0.2231 0.2264 0.2269 0.2183

0,

0.0125 0.1978 0.1961 0.193 0.1933

LID-
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Table 9. F + H2 Phases as a Function of Basis Set.

R
O./radians

P 7 8 9 previous
*Eu Ppr 89 method 10 .

0.010 7.664 7.645 7.754 5.748

0.0102 5.233 5.240 5.246 4.180

0.0103 4.764 4.746 4.769 4.003

0.0104 4.652 4.637 4.681 4.157

0.0105 4.448 4.432 4.477 4.157

0.0108 3.251 3.234 3.237 3.420

0.011 2.377 2.359 2.387 2.854

0.0115 0.550 0.529 0.533 NAa)

0.012 -1.063 -1.089 -1.086 0.400

0.0125 -2.544 -2.576 -2.553 -0.701

0.013 -3.875 -3.924 -3.928 -1.762

a) Not available.
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Table 10. F + H2 Phases as a Function of Projection Distance

02 /radians

Ppr 10 12 14 p
ea.P results

0.010 7.754 7.246 6.692 5.748

0.0101 6.209 5.511 5.434 4.760

0.0102 5.246 4.765 4.558 4.180

0.01025 4.942 4.411 4.297 4.034

0.0103 4.769 4.276 4.179 4.003

0.010335 4.718 4.242 4.160 4.028

0.010365 4.701 4.235 4.161 4.090

0.01004 4.681 4.226 4.158 4.157

0.0105 4.477 4.048 3.983 4.157

0.0106 4.104 3.708 3.650 3.972

0.0107 3.676 3.367 3.248 3.649

0.0108 3.237 2.878 2.816 3.420

0.011 2.387 2.065 2.028 2.854

" 0.0114 0.885 0.590 0.563 1.826

- 0.0118 -0.460 -0.720 -0.748 0.859

0.0122 -1.456 -1.921 -1.953 -0.700(-1)

0.125 -2.558 -2.783 -2.811 -0.701

Kt
L"
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R RFI. 1. Phase R0 of the scattering matrix element S;, for the H + H2

reaction as a function of the total energy E for different values

of the projection distance ppro Data for ppr = 11,12 bohr are

net plotted because of their similarity to the 10 bohr results.

Scattering calculations were performed with four even and

Zour odd basis functions; ether numerical parameters have

their values in Table 2.

FIG. 2. Phase 00 of the scattering matrix element !, for the H + H2

reaction as a function of the total energy En near the first

resonance by the previous method (line) and present method

(circle). Scattering calculations used Ppr = 10 bohr; all other

parameters are as in Fig. 1.
R R

FIG. 3. Phase 0R of the scattering matrix element S. for the H + H2

reaction as a function of the total energy E near the second
rresonance. Symbols are as in Fig. 2.
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Collinear coupled channel quantum mechanical calculations have

been performed on the title reactions on a potential energy surface with

a 40 kcal/mole barrier to exchange. This barrier height is close to

that predicted by ab initio calculations and suggested by experiments.

The relative effectiveness of reagent vibrational and translational exci-

tation to promote reaction is considered. A one-mathematical dimen-

sional (1MD) model for these reactions is constructed and is shown to

work very well for the D + FH reaction at high temperatures, and less

well for that reaction at lower temperatures as well as for the H + FD

reaction. Possible reasons for the breakdowns of the 1MD model are

discussed.
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1. Introduction

The exchange reactions between hydrogen o r deuterium atoms

and hydrogen halides

H' (D) + HX H' X(DX) + H (1)

(X = F, Br, C1, I) have been among the more studied simple chemical

reactions [1]. These reactions compete with the H(D) atom abstraction

process

H'(D)+HX - HH'(HD)+X. (2)

One of the goals of studies of these systems is the understanding of the W

relative importance of the exchange and abstraction channels.

Interest in reactions (1) and (2) has been heightened by the recog-

nition of their possible importance in collisional deactivation of vibra-

tionally excited HX in HX chemical lasers, especially when X F [2].

State-to-state rate constants for processes of the type

H'[D] + HX(v) - H'X(v' < v) [DX(v' < v)] + H (3a)

H' H(v") [HD(v")] + X (3b)

are necessary if one is to successfully model the kinetics of HX lasers.
bP

The exchange reactions (1) have been extensively studied by

classical trajectory calculations as well as collinear quantum mechanical

calculations for X = F [3], Cl [4], and Br [5]. Interest has been greatest

in the H(D) + FH and H(D) + CIH systems, which have the smallest num-

ber of electrons and are thus candidates for the calculation of accurate

potential energy surfaces by ab initio techniques. Such calculations

"- have been performed on the HFH and HC1H systems, and the results

suggest the existence of large barriers to exchange, in excess of

6 .5.
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40 kcal/mole for HFH and 20 kcal/mole for HClH [6]. Recent experi-

ments on these systems appear to confirm the existence of a high

barrier to exchange [7].

Mo st of the early theoretical studies of these systems were
4P.

carried out on potential energy surfaces with a small barrier to

exchange, and therefore cannot be expected to give even qualitatively

correct behavior for many important dynamical properties [8]. These

surfaces were normally obtained by using global semi-empirical

potential energy functions, such as the extended LEPS form [9], which

were obtained by optimizing agreement between quasi-cla ssical tra-

jectory calculations and experiments on the reverse of reaction (2).

In particular, in previous quantum mechanical studies of the HFH

* exchange reaction, both collinear [10] and coplanar 11], potential

energy surfaces with barriers to exchange of 1.2 kcal/mole and 1.8

kcal/mole, respectively, were used.

In this work, we report the results of collinear quantum mech-

anical calculations of the reactions

D+ FH (v) - DF(v)+H (4a)

H+FD(v) - HF(v')+D (4b)

o n a potential energy surface with a barrier to exchange of 40 kcal/mole.

We will be particularly concerned with the effects of reagent vibrational

excitation on the rate of reactions (4a, b) as this is a quantity which is 0

obtainable by experiment, and has been determined for reaction (4a) [7b].

The ability of a one-mathematical dimension (IMD) model to predict

and explain the results will also be considered.
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2. Potential Energy Surface and Computa tional Model

The potential energy surface used in these calculations is of the

rotating Morse-cubic spline type, which has been described elsewhere

[12]. In its application to this system, we have constrained the energy

level at the bottom of the local Morse oscillator well as a function of

the swing angle 0 (defined in ref. [12]) to be a Gaussian, with a maxi-

mum at 0 = u/4 radians. The saddle point occurs at RHF RF=

1.97 bohr. The values of P(O) were determined by fitting to the exchange

channel portion of the semi-empirical (extended LEPS form) Muckerman

V FHs potential energy surface [13]. Thus, the position of the minimum

energy path on this surface is identical to that on the Muckerman V sur-

face. Note that the saddle point on this surface occurs at a shorter RHF

distance than that predicted by ab initio calculations. A fuller descrip-

tion of the potential energy surface will be given in a forthcoming

paper [14]. This surface is plotted for the D + FH reaction in the

mass-weighted Delves coordinate system [15] in fig. 1.

A vibrational correlation diagram [16] for this surface, also

showing the potential along the minimum energy path, is shown in fig.

2. The potential energy Vn(s) along each curve (except, of course, for

that showing the minimum energy path) is the sum of the potential

energy along the minimum energy path VmeP(s) and the appropriate

eigenvalue Ev(s) of the potential formed by taking a cut perpendicular

to the minimum energy path (in Delves coordinates)

V (s) = VmeP(s) + Ev(S) (5)
ve sn

where s is the distance along the minimum energy path measured from



-5-

the saddle point, also measured in Delves coordinates. The eigenvalues - -

Ev(s) are determined numerically from the potential by a finite difference

procedure [171.

The numerical calculations were performed using the coupled-

channel method of Kuppermann, which has been described previously

[18]. Between 20 and 24 basis functions were used in the calculations,

and unitarity of the open part of the scattering matrix S was obtained to= -0

within 3% for all energies used; for most energies it was obtained to

better than 1%. Calculations were carried out to energies up to 2.45 eV

above the isolated HF (v = 0) energy level. At the highest energies -!

studied, there were six open HF states and eight open DF states. State-

to-state rate constants were calculated from the reaction probabilities

Pv?' which are a function of the reagent translational energy Etr by

the expression

tr~ Etr/kTdEtr
kvv (T) = (2 v Aa, bckT) 2 f Pvv (E,)e (6)

* 0

where a, bc is the reduced mass of the a, bc collision pair. The exact

method of evaluating this integral has been discussed by Truhlar and

Kuppermann [19].

Because of the large barrier to reaction, probabilities of reaction

are extremely small (< 10 " ) at small values of Etr. As the collinear

reactive scattering program is written in single precision (for use on

an IBM 370/158 computer), we do not entirely trust the exact magnitude

of these very small probabilities. Hence, we restrict the temperature

range of our rate constant calculations to those temperatures where the

major contribution to the integral in eq. (6) comes from energy ranges
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where the reaction probabilities are larger and thus more reliable.

3. Results and Discussion

Reactions (4) only become probable in this system for fairly large

values of the translational energy. In figs. 3 and 4, respectively, we

plot as a function of E the total reaction probability for reactions (4a)

and (4b), respectively, for a few of the lowest reagent vibrational states.

While there are some strong similarities between the two figures, such

as the large threshold to reaction, the relative magnitude of the threshold

lo wering with vibrational excitation, and the approximately parallel

nature of the probability versus energy curves in the region of greatest

increase of probability with energy, there are some major differences,

however.

In the immediate vicinity of and slightly above the threshold energy,

there are major differences in figs. 3 and 4 for vibrationally excited

reagents. For reaction (4a), for the D + FH (v = 1, 2) reaction, the

probability of reaction rises smoothly and rapidly in an s-shaped curve

from 0 to 1, while for reaction (4b), for the reaction H + FD (v = 1, 2),

there exist broad shoulders in these curves. It can be seen by examining

state-to-state reaction probability versus energy curves that the should-

ers seen in fig. 4 are due to reactions of the type

H+ FD(v) - HF(v- 1)+D. (7)

This is shown graphically for the v = 1 case in fig. 5, where state-to-

state reaction probabilities ]?R p , and are shown as a function of
10t 111 12 aesona ucino

Etr. It is worth noting that at higher translational energies,

becomes substantially smaller than P and P ,.

6.
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One other difference observed between figs. 3 and 4 is that at high

translational energies, the probability of reaction (4a) stays near unity,

while that of reaction (4b) is smaller than unity and is highly irregular.

The vibrational correlation diagram in fig. 2 provides a useful

way of looking at the DXH systems. A number of conclusions may be

drawn from a quick examination of this diagram for the DFH system.

First, because of the large barrier, there are no wells in the vibra- .

tionally adiabatic correlation diagram, at least for the first few levels.

As wells in this diagram have been shown to be related to resonances

in reaction probabilities (16], we can conclude that in the energy range

considered here there should be no resonances, and, indeed, none has

been observed in the dynamics. Second, because of the large difference

between HF and DF vibrational frequencies, the highest point on the

vibrationaUy adiabatic correlation diagram moves into the HF reagent

chanliel, especially for vibrationally excited reagents. Thus, one may

interpret, within a vibrationally adiabatic model, reaction (4a) as having

its saddle point on the reagent side, wlile reaction (4b) has its on the

product side. Third, the vibrational frequencies at and near the saddle

point are fairly large; hence the magnitude of the vibrationay adiabatic

barriers decreases with energy by an amount that is substantially

smaller than the vibrational energy spacing of HF and DF. Thus, for

example, the translational energy threshold for reactions (4a) should

decrease by 0. 21 eV on going from the ground to the first excited level

of HF and 0. 17 eV on going from the first to the second excited state of

HF; the differences in vibrational energies between these levels are

0. 49 and 0. 46 eV, respectively. The lowering in threshold energies
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(defined as the energy at which the probability of reaction first reaches

0. 02) for reaction (4a) are 0. 22 and 0. 17 eV, respectively. Thus, the

simple one-dimensional vibrationally adiabatic picture provides a good

model for the D + FH system at low translational energies.

For the H + FD reactions one can interpret the low e nergy non-

adiabatic reaction as occurring due to a crossing from the DF(v) curve

to the HF(v - 1) curve. If this crossing occurs on the DF side of the

saddle point (as seems reasonable from examination of fig. 2), the

apparent barrier to reaction should be much smaller than to vibration-

ally adiabatic reaction. This qualitatively explains the 0. 25 eV separa-

tion in fig. 5 between the center of the e flat maximum and that of the

* lmaximum.

Rate constants for reactions (4a) and (4b) are plotted in fig. 6 as

*: a function of temperature in the form of an Arrhenius plot (log of the

rate constant versus inverse temperature). Such plots are frequently

linear, over a broad temperature range, and linearity or near-linearity

is seen in all of the plots shown. In the usual way, Arrhenius pre-

exponential parameters (A) and activation energies (Ea) are obtained

for the linear region of these curves, and the resulting data are sum-

marized in Table 1. The vibrational energy associated with e ach

reagent level is also included in Table 1 for comparison.

The rate constants obtained are quite small in all cases; by

comparison, the gas kinetic rate constant kgk (that when every

collision results in reaction) is given by the formula

kgk(T) = k ' = 2.69× 10s T cmmolec - sec' (D + FH) (6a)
= 3.71 x 103 T2 cm molec' sec (H + FD). (6b)
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Even at the highest temperatures considered, the rate constants

are five to seven orders of magnitude less than gas kinetic. Thus, the

large barrier and the resulting large threshold for reaction produce

small rate constants.*
The activation energies E a shown in Table 1 decrease as reagent

vibrational excitation is increased. The lowering of the activation energy

with reagent vibrational excitation is less than the amount of internal

energy in the vibrationally excited reagents, however. Recall that a

similar behavior was observed for the lowering of the threshold energy

with reagent vibrational excitation. The decrease in activation energy

with reagent vibrational excitations is, however, greater than the

corresponding decrease in the vibrationally adiabatic barrier height.

This difference can be explained by the dominance of vibrationally non-

adiabatic reaction over vibrationally adiabatic reaction in the energy

region where the reaction probabilities are small (< 10'). This energy

region only makes a substantial contribution to the integral in eq. (5)

at fairly low temperatures.

In order to further understand the applicability of the one-

dimensional vibrationally adiabatic model, we have calculated trans-

mission coefficients for the three lowest vibrationally adiabatic barriers

for reaction (4a) as a function of tr a nslational energy. These calcula-

tions, involving a numerical solution of the one-dimensional Schrddinger

equation, were performed with the method described by Truhlar and

Kuppermann [20]. We then used these transmission coefficients (equiv-

alent to reaction probabilities in the coupled-channel calculations) to

calculate rate constants for the D + FH (v - 0, 1, 2) reactions, and the

*i
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results (labeled 1D for one mathematical dimension) at 5000K and

1000K are given in Table 1, along with those obtained in the full two

mathematical dimension (2MD) coupled-channel calculation. For

comparison, the gas kinetic rate constants are also included.

At 10000°K, the results of the 1MD and 2MD calculations agree

quite well (within 5%), while at 5000 K, the agreement is less satisfac-

tory, becoming worse as one goes from HF (v =0) to HF (v =2). This

lack of agreement when the HF reagent is vibrationally excited is due

to the above mentioned dominance of vibrationaUy nonadiabatic reactions

at low translational energies.

The usefulness of the vibrationally adiabatic model for the DFH

system makes it worthwhile to well characterize the potential energy

surface in the region at the saddle point; in particular, accurate values

of the local vibrational frequencies (i. e., the symmetric stretch at the

saddle point) are important, as these, along with the actual barrier

height itself, combine to give the vibrationally adiabatic correlation

diagram shown in fig. 2 and found to be so useful.

A word of caution must be expressed concerning the applicability

of a colinear model to reactions (4). Ab initio calculations by Wadt

and Winter [6] suggest that the lowest barrier to exchange occurs not

for a collinear H-F-H configuration, but rather for one with a 1060

bond angle, and further that the barrier height is nearly independent of

the bond angle. Thus, it appears that an accurate dynamical treatment

of the exchange reaction would require three physical dimensions (3D).

A 3D calculation on this system would have the advantage of allowing

one to directly compare the importance of the abstraction and exchange
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channels. Such a calculation would require a good semi-empirical

potential energy surface incorporating a large barrier to exchange.

A method for constructing such a surface has been developed by Baer

and Last [21], and has been applied to all XH2 systems. Their FH2

surface has a reasonably high barrier (33.5 kcal/mole), but has much

stronger dependence of the barrier height on the H-X-H bond angle than

that predicted by Wadt and Winter [6].

0" 0

• " .O

L4
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4. Conclusions

Reaction probabilities and rate constants for reactions (4a) and

(4b) have been obtained on a realistic potential energy surface by a

collinear quantum mechanical calculation. Reaction has been shown to C:

set in at large values of the translational energy (a 1 eV) for reagents

in their first three vibrational states. Vibrational excitation has been

shown to promote the reaction, although the decrease in the activation

energy is less than the internal energy added to the reagents on vibra-

tional excitation. A number of aspects of the dynamics, such as the

translational energy threshold for reaction and the importance of vibra-

tionally nonadiabatic processes near the threshold region for reaction

(4b), have been shown to be explained by use of vibrationally adiabatic

correlation diagrams. The overall rate of reaction (4a) has been shown

to be reproduced quite well at high temperatures by a 1MD model based

on these vibrationally adiabatic correlation diagrams. The results

* obtained help demonstrate the importance of an accurate knowledge of W

the potential energy surface in the immediate vicinity of the saddle point.
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Table 1

Arrhenius parameters for rate constants for reactions (4a, b)

fn A Ea Internal
EnergyV T (0 K) (cm • molec' (kcal/ of Reagent

sec " ) mole) (kcal/mole)

A. D + FH(v) - DF(v'= all)+ H

0 500-950 11.8 36.8 5.8

1 450-700 9. 3 28. 3 17. 0

2 450-600 4.8 18.0 27.7

B. H + FD(v) - HF(v'= all) + D

0 550-1000 11.9 38.6 4.2

* 1 450-800 9.4 30.3 12.4

2 450-700 6.8 22.8 20.4

3 450-700 4.5 16.5 28.1

• ' , - : -- " " Y -" . . . . | 1 n m - "S
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9.,

Table 2

Rate constants for the reaction D + FH(v) - DF(v' = all) in units
• 1 -1

cm "molec sec

T(°K) v=0 v 1 v=2

2MD

500 1.16 (-11) 3.91 (-9) 8.42 (-7)

1000 1.29 (-3) 1.61 (-2) 1.07 (-1)

1MD

500 9.80 (-12) 1.43 (-9) 8.28 (-8)

1000 1.23 (-3) 1.57 (-2) 1.07 (-1)

Gas Kinetic

500 6.02 (4) 6.02 (4) 6.02 (4)

1000 8.51 (4) 8.51 (4) 8.51 (4)

* ~.-j

6
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Figur Ctions

Figure 1. Contour plot of the potential energy surface for the reaction

D + FH - DF + H in Delves scaled coordinates. The solid curves are

equipotential contours at the total energies measured with respect to

the bottom of the HF (DF) wells. The dashed line is the minimum energy

path. The cross indicates the location of the saddle point.

Figure 2. Vibrationally adiabatic correlation diagram for the reaction CO

D + FH(v) - DF(V) + H, v = 0, 1, 2. The vertical scale is an energy

scale. The lowest curve is the potential energy along the minimum

energy path VmeP(s) as a function of the distance s along the minimum

energy path from the saddle point. Positive values of s take one towards

separated D + FH, negative values of s tawards DF + H. The higher

curves are plots as a function of s of the potential V v(s) defined in eq.

(5) of the text for v = 0, 1, 2.

Figure 3. Probabilities P.FHi(v) of the reactions D + FH(v) -DF(v=

all) + H for v = 0, 1, 2 as a function of reagent translational energy Et r .

The solid line is for v = 0, the dashed line is for v = 1, and the dotted

line is for v = 2.

Figure 4. Probabilities P.R.F(v) of the reactions H + FD(v) -HF(v' =

all) + D for v = 0, 1, 2, 3 as a function of reagent translational energy Etr.

The solid line is for v = 0, the dashed line is for v =1, the dotted line

is for v =2, and the dashed line is for v= 3.

Figure 5. State-to-state reaction probabilities R of
the reaction H + FD(v= 1)- HF(v') + D for v'= 0, 1, 2 as a function of

reagent translational energy Etr. The dashed line is for v' = 0, the

*
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solid line is for v=1, and the dotted line is for v= 2. While the

HF(V' = 3) product channel is energetically accessible in this energy

range, the probability of reacting into it is less than 1% in this energy

range, and is not shown.

FIgure 6. Arrhenius plot of rate constants for the reactions D + FH(v) -

DF(v' = all) + H (dashed line) and H + FD(v) - HF(v' = all) + D (solid line)

over a temperature range from 450 to 15000K. Where the curves are

not continued to the highest temperatures, the scattering calculations

were not carried out to sufficiently high energy for the integrand in eq.

(6) to become sufficiently small. (a) H + FD(v = 0), (b) D + FH (v = 0), 4

(c) H + FD (v =1),(d) D + FH (v 1),(e) H + FD (v 2), (f) D + FH

(v = 2), (g) H + FD (v = 3).
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Collinear Quantum Mechanical Calculations on the Systems

HF(v) + H and HF(v) + D on a Realistic Potential Energy Surface)
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The rates of the reactions HF(v) + H and HF(v) + D as well as

those of processes resulting in vibrational deactivation of HF have

been studied by collinear quantum mechanical calculations on a

realistic potential energy surface. The surface used has a

40 kcal/mole barrier to exchange, far greater than those used in

previous calculations and in the vicinity of that suggested by

ab initio calculations and recent experiments. It is found that

vibrational deactivation of H 7 in this exchange channel occurs

almost entirely by non-reactive single-quantum processes, and

the rate of which varies weakly with reagent vibrational state.

The rate of chemical reaction, however, is enhanced dramatical-

ly by reagent vibrational excitation, although vibrational energy

* lowers the threshhold for reaction by far less than a vibrational

q-uantum of energy. The relationship between vibrational and

translational energy in promoting reaction will be discussed, as

will the relationship of the results of these calculations to

experimental data.
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I. INTRODUCTION

A knowledge of accurate rate constants for the reactions of vibrational- 0

ly excited hydrogen fluoride (HF) molecules with those atoms and mole-

cules present in the HF laser system (1) (F 2 , H2 , HF, H, F) is important

if one is to accurately model the system's behavior. In the HF laser sys-

tern, vibrationally excited HF is produced by one of the highly exoergic

reactions (2)

F +H2 - HF(v_3) +H (I)

H + F 2 - HF(vi0) + F (ib)

These pumping reactions have received a great deal of attention, both

expe: imentally (3) and theoretically (4). Of the deactivating processes

present in the HF laser, the best studied are those due to inelastic col-

lisions of vibrationally excited HF with other diatomics (ground state HF

and H ) (5). Collisions of vibrationally excited HF and H or F atoms

have received less attention. Among the few studies of these processes

include the experiments of Bott and Heidner (6) and Bartoszek, et al. (7),

and the quasi-classical trajectory calculations of Wikins (8), Thompson

(9), and Thommarson and Berend (10). Recently, Schatz and

TKuppermann (11) have studied the HF + H system (and its D-substitu-

ted counterparts) via a coLinear quantum-mechanical calculation, -

although the barrier to reaction in the potential energy surface used in

these calculations is now known to be unreasonably low. Baer (12)

has performed a coplanar quantum mechanical calculation on the HF
+ H reaction, also on a surface with an unreasonably low barrier.

In this paper, we report the results of collinear quantum mechanical

calculations on the systems HF(v) + H and HF(v) + D. We consider those 0

processes, both reactive and non-reactive, responsible for vibrational

deactivation of HF, which may be represented by the reactions

HF(v) + H' - HF(v') + H' (2a)
*H + FH(v") (2b)
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HF(v) + D- H{F(v') + D (3a)

-- + FD(v") (3b)

The potential energy surface used in these calculations has a barrier to

exhange of 40 kcal/mole. This is in line with recent ab initio calculations

(13) as well as the definitive experiments of Bartoszek, et al. (7).

No attention will be given to deactivating processes in the abstraction

channel

H' + HF(v)---H(v') + F (4a)
-- )'+ HF(v" ) (4b)

in this paper, although this channel is likely the one in which much of the

deactivation of HF(v&3) occurs.

We focus in this work on the relative rates of vibrational deactivation as

a function of the initial state of the HF reagent, the fraction of deactivation

occurring by reaction (processes 2b and 3b, respectively in the HFH and

DFH systems), the relative importance of single and multi-quantum deacti-

vating processes, and the relative effectiveness of translational energy in

promoting reaction.

A brief outline of this paper is as follows. In section 2, we consider

the potential energy surface used in these calculations and the reasons for

which we chose to use it. In section 3, we very briefly discuss some of

the important aspects of the calculation. In section 4, we present our re-

sults, which will be discussed in section 5. In section 6 we summarize

by reviewing their significance.

|.
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II. POTENTIAL ENERGY SURFACE

* There has been a great deal of interest over the last decade in deter-

mining the nature of the potential energy surface for reactions 2b and 3b.

A large number of semi-empirical global potential energy surfaces, mainly

of the extended LEPS type (14), have been developed for reaction la (15).
The parameters for these surfaces were normally chosen to maximize

agreement between the results of quasi-classical trajectory calculations

and experiments on reaction la (quantities compared are usually rate con-

* stants and distributions of product vibrational and rotational states).

Since these surfaces are global, the form of the exchange channel is de-

termined by this optimization procedure (which has taken place in the

abstraction channel).-. Most of these surfaces have a very small barrier to

exchange, for example I .2 kcal/mole for the well-known Muckerman V

surface (4d). Such low barrier surfaces have been used in most dynamical

calculations performed so far on reactions 2 and 3. A notable exception is

9 the calculation done by Thompson (9), in which a surface with a barrier to

exchange of 28.6 kcal/mole was used.

Four high quality ab initio calculations on the potential energy surface

of reactions 2b and 3b yielded barrier heights of 49.0 (13a), 44.9 (13b),

47.6 (13c), and 48.3 (13d) kcal/mole, however, and the experiments of

Bartoszek, et al. (7) seem to securely resolve this question in favor of a

high barrier to exchange. In this calculation, therefore, we use a potential

energy surface with a barrier to exchange of 40 kcal/mole, which seems to 4

be within the range of uncertainty of the ab initio calculations.

The potential energy surface used in these calculations is of the rota-

ting Morse- cubic spline type (16), made slightly less general by requiring

that the potential energy along the minimum energy path as a function of

the angle 8 in reference 16 to be given by a Gaussian:

D(O) = D(D-0) - (A + B*exp(-C*(ir/4 -)2)} (5)

The parameters have values A = 0.01681 kcal/mole, B = 39.983 kcal/mole, .
-i

and C = 33.879 radians . i(9) and 2 eq (&) are defined in reference 16, and
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are obtained by cubic spline interpolation between the values given for

the supplied points listed in Table 1. The profile of the barrier height

vs. reaction coordinate (distance along the minimum energy path from

the saddle point as calculated in Delves mass-scaled coordinates (17))

for H + FH is shown in figure 1, along with the asymptotic eigenvalues for

HF and DF. A contour plot of the potential energy surface for H + FH

in Delves coordinates is shown in figure 2.

eIi

"*? .' -. i+ + : _ .- - + _ + .. ...,. . . . . - . + + , + . . .
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In. DETAILS OF THE CALCULATION

Numerical solution of the Schr~dinger equation for these systems

was performed using the coupled-channel method of Kuppermann (18),

which has been described elsewhere. This technique has previously been

applied to a number of systems, including H + Hz and its isotopically

substituted analogues (20), F + H2 (4d), F + D2 (21), H + FH (on a low

barrier surface) (Mi), and Be + FH (22). 20 - 24 basis functions were used

in the calculation, although no more than seven were open asymptotically

I 9 at any of the energies studied.

Reactions Za and 2b were studied in the energy range up to 2.94 eV

above the zero-point energy of HF, while reactions 3a and 3b were studied

up to 2.45 eV above the HF zero-point energy. The smaller range in the

latter case was due to the smaller vibrational requency of DF, which re-

sults in more open channels at a given energy than in the HF system

(energy levels of isolated HF and DF are shown in figure i). In all

, calculations reported he7 flux was conserved to better than 30; for

most energies it was conserved to better than /.

From the transition probabilities obtained in these calculations,

state-to-state rate constants were calculated by evaluating the usual

integral

k..M (1r^ kT i Z P. (tr)exp(-Et /kT)dEt
- negrl(T) = (2rbkT / i (.EtreP' tr/k~ tr (6)

where P.. is the probability for the transition from state i to state j,tr Ij

Er is the relative translational energy of the collision, and "a bc is the

reduced mass of the a, bc collision pair.

-!

-,
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IV. RESULTS

Wehave obtained information on many aspects of the dynamics of the

collinear HFH and DFH systems and will try tc present some of the most

important features of our results in this section. In particular, we will

consider in this section and the ensuing discussion section questions such

as the following:

j)Vhat are the relative rates of deactivation of the vibrationally ex-

cited HF, and how do they vary with initial reagent excitation?

2) What is the relative importance of reactive and non-reactive pro-

cesses ?

3) What is the relative importance of single and multi-quantum

transitions? A

4) How do all of these quantities vary with temperature ?

5) How do the roles of translational and vibrational energy in promo-

ting reaction compare ?

6) How do the results obtained for non-reactive processes compare

with those predicted from simple models, such as the Landau-

Teller model (23)?

7) What is the nature and magnitude of the isotope effect on going from

the HFH to the DFH system?

A. H+FH

Rates for state-to-state vibrational deactivation have been calculated

for temperatures in the range 200 K..T_ 1000 K. Values of the rate

constants at three temperatures (300, 650, 1000 K) are contained in

Table 2. For purposes of comparison, we also include in Table 2 the

1"gas kinetic" rates for the H + FH system at these three temperatures.

This rate is that obtained if a transition occurred with unit probability at

all energies; hence, it represents the sum of all possible state-to-state

rate constants at a given temperature. It is seen that at all three tempera-

tures, the total rates of deactivation are less that i0 of the gas kinetic

rate. Thus, vibrational deactivation is a very unlikely process.
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We display total rate constants for vibrational deactivation, both

reactive and non-reactive, as a function of initial HF quantum number

in figure 3. Three important features of the dynamics are clearly evi-

dent on this plot:

* 1) For all initial quantum states at all temperatures, non-reactive

deactivating processes are much more likely than reactive pro-

cesses, and account for, to a good degree of approximation, all

the deactivating processes.

2) The variation of the rate of deactivation occurring by non-reactive

processes with initial HF quantum number is far less than that of

the reactive processes.

3) The variation of the rate of deactivation occurring by non-reactive

processes with temperature is far less than that of the reactive

processes.

An additional difference between the dynamics of deactivating pro-

cesses in non-reactive collisions from those occurring in reactive

ones may be seen in Table 2. Specifically, in non-reactive collisions,

vibrational deactivation occurs overwhelmingly by single-quantum

* transitions, while in reactive collisions, deactivation by multi-quantum

transitions is favored. Further, while the dominance of non-reactive

deactivating processes by single-quantum transitions occurs over the

whole temperature range considered, in reactive deactivating processes,

as temperature increases, the single-quantum processes become more

important than they are at lower temperatures. This may be seen

graphically in figure 4, in which four state-to-state rate constants

(kN , kN k 0 R, k2 R, where the superscripts N and R refer to

non-reactive and reactive processes, respectively) are plotted vs.

temperature as Arrhenius plots, that is, in k vs. /T. We will con-

sider in some detail the vibrational state distribution of the products

of reactions 2b and 3b later on.

In considering the temperature dependence of the rate constants
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obtained, it is frequently useful to make Arrhenius plots (defined above)

of the rate constants as a function of temperature. It is known that for a I

wide variety of chemical reactions, such plots yield straight lines, al-

though curved Arrhenius plots are also common (24). In the systems

studied, it is frequently seen that Arrhenius plots for state-to-state

rate constants are linear at high temperatures (>700 K), but are non-

linear at lower temperatures. Frequently, they have linear regions at

high (700 - 1000 K) and low temperatures (200 - 400 K), but are curved in

between.

Reactions yielding linear Arrhenius plots obey the relationship

k = Aexp(-E 1k T) (7)
ab

where A is the Arrhenius pre-exponential factor, E is the activationa
energy for the reaction, and kb is Boltzmann's constant. These quanti-

ties correspond to the y intercept and slope of the Arrhenius plots, re-

spectively. For ground vibrational state reagents, the activation energy

of a reaction is usually fairly close to the barrier height to the reaction

in the potential energy surface; when the reagents are vibrationally exci-

ted, it is frequently less. We examine plots of activation energies vs.

initial quantum states for n-quantum non-reactive and reactive deactiva-

ting processes in figures 5 and 6, respectively.

In figure 5, it is seen that there is no well-defined relationship

between the activation energies for the non-reactive processes and

reagent vibrational state. There does seem to be a clear difference in We

the magnitudes of the activation energies for deactivation from v = 4 and

5 and those from vS3. Further, for deactivation from the higher vibra-

tional state, the activation increases drastically for large multi-quantum
4.,

transitions. Much more regular (and different) behavior is observed in

figure 6, in which we consider activation energies for reactive deactiva-

ting processes. In this case, one may clearly see that the activation

* energies decrease substantially with reagent vibrational excitation, and

in general, decrease as one goes from single-quantum to multi-quantum
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transitions. This is another example of differing dynamics between non-

reactive and reactive collisions. This subject will be further explored 6

later on.

Because of the large barrier to exchange (40 kcal/mole) in the

potential energy surface used in these calculations, it is reasonable that

reaction should only occur at high translational energies. This may be e

easily seen in figure 7, in which the total probability of reaction P is
V

plotted vs. translational energy for initial reagent vibrational states

v = 0-3. Reaction becomes appreciable at successively smaller values of

the translational energy as the vibrational level of the HF reagent is

increased. The decrease in translational energy requirement for reac-

tion threshhold is in the vicinity of 0.15 - 0.20 eV per vibrational quantum,

which is substantially smaller than the vibrational quantum of 0.45 - 0.49

eV. This difference will be considered more fully later. It is also

evident that as the initial HF vibrational state is increased, the probability

for reaction vs. translational energy curve becomes more irregular, not

increasing smoothly to one as the v = 0 curve does.

In studying the dynamics of the reactive processes in general, it is

worthwhile to consider the distribution of product vibrational states, forS
deactivating, vibrationally adiabatic (involving no change in quantum

number) and exciting (involving an increase in the quantum number) pro-

cesses. We consider some of these distributions for the HF reagent in

its v = i and v = 2 states at differing translational energies in figures

8 and 9, respectively. In these figures, the product state distribution is
R

given in terms of F , the fraction of reaction products going into the

product state v' R
R vv'

F =
vv * . 0

max R (8)
1=0 vv

where v is the maximum quantum number permitted by energy con-
s max
servation. It is seen that at lower translational energies (but high enough
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for a large probability for reaction), vibrationally adiabatic reaction is

far more likely to occur than either deactivating or exciting reaction.

This preference for vibrational adiabaticity decreases as translational

energy increases. At the highest translational energies considered, the

distribution of product states is fairly flat for v = 2 reagent and shows

some evidence of bimodality for v = I reagent.

One good measure of the distribution of product states is the average

fraction of available energy going into product vibration, which is defined

* by the formula R E(
m a x

<f R> Z,-0 v'E, V'
(Etr + E 

(9)~~~v =0  W 4

where energies are measured with respect to the bottom of the product

well. This quantity is displayed in figure 10 for the H + FH(v:-3) reac-

tions. No data are presented for the v= 4 and 5 initial reagent states

because the calculations were not carried out to sufficiently high energy

for there to be appreciable reaction. Lines are drawn to represent the

value this quantity would have if all reactions proceeded adiabatically

(with no change of quantum number). For v = 0 and v = I reagents, at

low translational energies (but still high eneough for appreciable reac-

tion), this quantity is fairly close to that expected if all reaction pro-

ceeded adiabatically, but at higher translational energies, it increases.

Thus, at high translational energies, vibrational excitation is more likely

than deactivation in reactive collisions. For v = 2 and v = 3 reagents,

the calculated points lie below the lines; hence, in the energy range con-

sidered, the net effect of the reactive collisions is a deactivating one.

B. D + FH

In considering the deactivation processes in this system, we have

elected to look mainly at the processes which represent deactivation in
7

an "absolute quantum number" sense, that is, for reactive deactivating
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processes, only those of the type

D + FH(v) - DF(v'<v) -H (10)

Due to the smaller vibrational energy spacing in DF than in HF, it is

possible, as may be seen from figure 1, for some DF(v) levels to ac-

tually have less internal energy than some HF(v-n) level, where n is an

integer that is 0 for v = 0, 1, 2, 3, 1 for v = 4, and which increases ir-

regularly with v thereafter. Further, since all vibrationally adiabatic

reactions of the type 3b (where v" = v) have the DF product containing

less internal energy than the reagent HF, they might be defined as de- S

activating processes in the "strict energetic" sense.

State-to-state rate constants for the deactivating processes 4a and 4b

are given in Table 3, at 300, 650, and 1000 K along with the correspon-

ding gas kinetic rate constants. Again, the overwhelming dominance of

non-reactive processes (and single-quantum deactivating ones) is seen.

A few reactive processes not satisfying the strict quantum number defi-

Snition for deactivation are also included in Table 3. These processes .

become more important relative to the total set of reactive deactivating

processes as temperature increases. As in the H + FH case, the net

contribution of reactive processes to the total deactivation of vibrational-

ly excited HF may be neglected.

On the whole, the deactivation rates for HF by collisions with D is

smaller than that for deactivation by H. Some of this difference is to be

expected by consideration of the gas kinetic rate constants, which are 0

related by the expression
GK GK
D+FH H+FH

(the superscript GK refers to gas kinetic); the magnitude of the dif-

ference observed is greater than this, however.

Because of the similarity between the dynamics of the non-reactive

deactivating processes in the H + FH and D + FH systems, we will focus

our attention on the reactive ones, particularly because the se are most

easily amenable to experimental study. We first consider the total proba-
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bility for reaction as a function of translational energy for initial HF

states v = 0, 1, 2. This is plotted in figure II in a manner analogous to

that used in figure 7 for the H + FH system. We see large tresholds,

very similar in magnitude to those observed in the H + FH case. The

spacings between the curves are on the order of 0. 15 and 0.22 eV be-

tween the v= I and 2 and the v= 0 and i curves. This is very close to

the 0.15 - 0.20 eV spacings observed in the H + FH system. One dif-

ference between the two systems is that the reaction probabilities seem

to rise inore smoothly to one (and to stay there) for reagent states

v = I and 2 in D + FH(v) collisions than in the corresponding H + FH

one s.

Wehave also examined the distribution of product (DF) vibrational

states for initial reagent states HF(v = 1, 2) at a few translational ener-

" gies, some of which were the same as in the corresponding H + FH

cases. These are shown in figures 12 and 13 for v = I and 2, respec-

tively. It is observed that there is slightly less tendency t'wards vib-

rational adiabaticity than in H + FH. As in the H + FR case, the product

distribution broadens as one goes to higher translational energies, and

there is some evidence for bimodality in the distribution at high energies.

Finally, w have calculated the average fraction of product energy

going into vibration. This is displayed in figure 14 for HF initial

. states v = 0, 1, 2 (this is analogous to figure 10 for H + FH). Again,

lines are drawn t)Tough the points representing the value of <fv> if

the reaction proceeded adiabatically. Since the DF vibrational spacing

is smaller than that of HF, <f > for the D + FH reaction should be

*i smaller than for the H + FH one. By comparing figures 10 and 14, it )

can be seen that this is indeed the case.

'.1

I °
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V. DISCUSSION

The overwhelming dominance of non-reactive processes in accoun-

ting for vibrational deactivation of HF in collisions with H and D atoms

in the exchange channel makes it useful to discuss the non-reactive

processes separately from the reactive ones. Also, we have shown

that the dynamics of the reactive and non-reactive processes are very

different (for example in their preference for single or multi-quantum

transitions, and in their activation energies). We will consider first the

non-reactive deactivating processes, focusing on the variation of the

deactivation rate with reagent vibrational state and the degree to which

the calculated deactivation rates obey predictions of the approximate

Landau-Teller theory. We will then consider the reactive processes,

particularly the relative ability of translational and vibrational energy

to promote reaction. We will also examine the results of our calcula-

tions in the light of experimental studies of the vibrational deactivation

of HF by H and D atoms to show that deactivation of HF(v1t, 2, 3) must

be dominated by processes occurring in the abstraction channel 4.

A. NON-REACTIVE PROCESSES

The calculations show that, in general, the rate of vibrational de-

activation increases as reagent vibrational excitation increases. This

is true for HF(v=i, 2, 3) + H and D. In the HF(v=4, 5) + H cases one

does see lower deactivation rates than for HF(v=3) + H, although the

decrease becomes smaller at higher temperatures. Because of the -S

large barrier to exchange present in the potential energy surface, it

may be reasonable to consider whether the key features in the results

obtained here might have been obtained by a model based on a purely

non-reactive system, i.e. one in which reactions Zb and 3b cannot

occur.

Such a model is the Landau-Teller model (described in reference

23) for energy transfer in non-reactive collisions. The chief predic- -S

tions of this model (that of a collision of a particle with a harmonic
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oscillator governed by a repulsive exponential potential)

are as follows:

1) All deactivations occur by single quantum transitions.

2) The rate constants for deactivating processes between different
vibrational levels are related to the i -- 0 deactivation rates

by the expression N =cN
kN  =- 110 (12)

v, v-1 1, 0

3) The rate constant for the deactivating process is related to the

temperature T by the expression:

Ink= A - BT 1 / 3  (13)V, v-1

where

B 3(r2W 45 VI)1/3 (14)

where,,* is the reduced mass of the collision partners, I/ is the

vibrational frequency of the harmonic oscillator, and a is related

to the steepness of the assumed exponential interaction potential

V(r) = V exp(-ar) (15)0

where r is the distance from the center of mass of the harmonic

oscillator to that of the second particle.
N -1t/3Landau-Teller plots (plots of In k vs. T for H + FH

V, v-I
and D + FH are shown in figures 15 and 16, respectively. The plots

are all reasonably linear (meaning equation 13 is approximately

obeyed by the data), especially at lower temperatures. Further, the

slopes of the v = 1, 2, 3 curves for H + FH are all roughly the same,

as are those for the v = 4 and 5 curves for HF and those for v = 1, 2,3

for D + FH. The major deviation in behavior from that predicted by

Landau-Teller theory, then, is the smaller value of the rate constants

for deactivation from v = 4 and 5 in H + FH(v) collisions, and the dif-
L

ferent slope from the v = 1, 2, 3 curves (notice that according to eq. 13

the slope of the Landau-Teller plot should be independent of the ini-

tial vibrational state).
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The effect of substituting D for H as one of the collision partners

may also be examined in light of the pre dictions of the Landau-Teller 6

model. From equation t3, one sees that the slope of the Landau-Tel-

ler plot should be proportional to the one-third power of the reduced

mass of the collision. Since this mass for D + FH is roughly twice its

value for H + FH, the slopes for D + FE deactivations should be great-

er than for H + FH deactivations by a factor of 21/3 or roughly 5/4.

It is difficult to calculate exact ratios of slopes due to the non-linearity

* in the Landau-Teller plots in figures 15 and 16 at high temperature.

Using crude estimates, however, one can find that the slopes are in-

deed greater for the D + FH deactivations than for H + FH by a number

that varies between 20% and 45%. Thus, the Landau-Teller model does

predict the general behavior and magnitude of the effect of isotopic sub-

stitution on the temperature dependence of the single-quantum non-

reactive deactivating processes.

9 The main failing of the Landau-Teller theory, then, is its inability

to predict the difference in the temperature dependence and thus the
N N

magnitude of the rate constants k and k It is tempting to attri-4354

bute this failing to the fact that the total vibrational energy associated

with the v = 4 and 5 levels is greater than the 40 kcal/mole barrier.

Since there is always sufficient energy in collisions involving these

states to overcome the classical barrier, one might expect different dy-

namics than in cases (i.e. v. 3) where a substantial amount of transla-

tional energy is needed. There is no strong evidence for this interpre-

tation, however.

One might be able to verify such a hypothesis by reducing the barrier
@0

height of the surface somewhat such that it is between the v = 2 and

v = 3 levels. In that case, one might expect different dynamics in col-

lisions involving HF(v = 2) and HF(v = 3). We have carried out scat-

tering calculations for this reaction on a variety of surfaces with re- O

duced barriers (25) but otherwise identical to that used here (the para-

O0
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meters A, B, and C defined in eq. 5 giving the energy along the minimum

energy path as a function of the angle O differ; the functions 1 eq() and -,

P() as defined in ref. 16 are identical), and will conduct similar Lan-

dau-Teller analyses of the dynamics on those surfaces.

A dynamical reason for this difference might be observable in colli-

near quasi-classical trajectory calculations. However, the small frac-

tion of collisions resulting in vibrational deactivation might make such

a study difficult.

B. REACTIVE PROCESSES

As has been mentioned repeatedly, the net contribution of reactive

processes to vibrational deactivation is essentially negligible over the

temperature range studied. Thus, the interest in reactive processes

centers around the effect of reagent vibrational excitation on reaction

rate and the distribution of product vibrational states. For reaction

3b both of these quantities should be fairly easily accessible to experi-

mental study (the experiments of Bartoszek, et al. (7) included a study

of the former).

From table 2 and figure 3, the enhancement in the rate of reaction

with vibrational excitation for reaction 2b is clear; table 3 similarly

shows the effect for reaction 3b. For reaction 2b at 300 K, for exam-

ple, the relative rates of reaction for v = 1, 2, 3, 4, 5 are approximately
4 ii 13 151:10 :10 :10 :105. In spite of this large vibrational enhancement,

we can show that the efficiency of vibrational excitation in promoting

reaction is quite small. This can be seen in a variety of ways.

First, one may consider the threshold energy for reaction. We de-

fine this quantity as the translational energy at which the probability

for vibrationally adiabatic reaction first reaches 0.01. This quantity

"" is plotted as a function of vibrational energy in figure 17 for both reac-

tions 2b (for v = 0, 1, 2, 3, 4) and 3b (for v = 0, 1, 2, 3). If vibrational

energy and translational energy were equally effective in promoting re-

action, the Lines in figure 17 would have slopes of -1, as the total

0 -'1



energy threshold for reaction would be independent of reagent vibra-

tional state. Instead, the curves are non-linear, although they can be -

fairly well approximated by straight lines whose slopes are approxi-

matley -0.31 for reaction 2b and -0.36 for reaction 3b. Thus, only

some 1/3 of the vibrational energy goes towards promoting reaction.

This fact can also be seen in the plots of total reaction probability vs.

translational energy for reactions Zb and 3b (figures 7 and ii, 3ec-

tively) in which it is seen that each quantum of reagent excitatio. ,wers

W the region of rapid increase of probability with translational ent by only

0. 15 - 0.20 eV, less than half the vibrational spacing of HF of t , -

0.50 eV. This inefficiency of vibrational energy is also seen in figure

6, in which even in the v = 5 state, where the reagent has some 2.4 eV

of vibrational energy above the zero-point energy, the activation

energies for reaction 2b may be as high as 13 kcal/mole. Since this

amount of vibrational energy is far in excess of the 40 kcal/mole classi-

*cal barrier height, one can see that vibrational energy is not entirely

useful in promoting reaction.

In comparing threshold energies for different reagent vibrational

states, it is important not to neglect the contributions of the vibrational

energies for the H--F--H configuration occurring at the saddle point

(R9 , r4 ) on the potential energy surface. Because the surface does

not appreciably widen near the saddle point region these energies

will be fairly large, and thus the vibrationally adiabatic barrier height

AV , defined by the expression
A = E (R -E (R=) (15)

v v v

will decrease only gradually -dth increasing v.

Wehave calculated the AV* for reaction 2b, and plotted the reac-
v

tion threshold vs. them in figure 18. The resulting plot is approxi-

mately linear with a slope of 0.8. Thus, as the reagent vibrational

state is increased (decreasing AV* ), the reaction threshold does notv

decrease as quickly as AV V although the two decreases are fairly
V

Q4
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close in magnitude. Thus, much of the inefficiency of vibrational ex-

citation in producing reaction is due to the persistence of a large vibra-

tionally adiabatic barrier height to large quantum numbers. Because

the vibrationally adiabatic barrier heights can be expected to be slight-

ly smaller for reaction 3b than for 2b due to the heavier D atom being

substituted for one of the H atoms at the saddle point, vibrational ener-

gy should be slightly more effective at promoting reaction 3b than 2b.

This is observed in figure 15, where the slope of the threshold energy

vs. vibrational energy curve is some 10% higher for reaction 3b than

for 2b.

This feature of the dynamics might be particularly sensitive to the

exact nature of the potential energy surface near the saddle point, as

a smaller vibrational frequency at the saddle point vm uld decrease AV ,
V

thus increasing the efficiency of vibrational energy in promoting reac-

tion. Similarly, increased curvature in the minimum energy path pro-

duced, for example, by moving the saddle point to large values of RHF,

might better couple translational and vibrational energy, thus leading to

increased efficiency of reagent vibrational excitation.

C. RELATIONSHIP TO EXPERIMENT

In analyzing the vibrational deactivation of HF by H and D, one must

be careful in relating the results of collinear quantum mechanical cal-

culations to experiment. The calculations reported here do not include

the abstraction channel, which may be where most of the deactivation

occurs, and include only the collinear portion of the exchange channel,

possibly eliminating important non-collinear reactions of the overall

potential energy surface. We will attempt in what follows to deal with

these two limitations.

The experiments most relevant to the study of HF vibrational de-

activation by H and D atoms are those of Bartoszek, et al. (7) and of

Bott and Heidner (6) . Additional experiments have been performed by

Quigley and Wolga (26). Bartoszek, et al. (7) showed that DF forma-
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tion via the reaction 3b only becomes appreciable when the initial vibra-

tional state of HF was five or greater. They also showed that disappear- •

ance of HF(v = 3, 4) was due to the abstraction reaction (the D analogue

of reaction 4a). In their kinetic work, Bott and Heidner (6) found rela-

tive rate constants for removal of HF(V = f, 2, 3) by collision with H

atoms ofi:4:400, and determined that the abstraction reaction 4a can

contribute only some 20% of the observed removal rate of HF(v = 3) at

295 K. This latter result seems to contradict that of Bartoszek, et al.

(7), who relate the increase in deactivation of HF(v = 3) by D atoms to

the opening up of the abstraction channel.

In our calculations in the exchange channel, we see nothing remotely

resembling the 1:4:400 ratio for deactivation of HF(v = 1, 2, 3) by H* .4
atoms observed by Bott and Heidner (6). Instead, as mentioned earlier,

the deactivation rate increases nearly linearly with reagent vibrational

state for v 43. Unless these results were to change drastically on

going to a full three-dimensional calculation, it seems reasonable to

attribute the results of Bott and Heidner (6) to deactivating processes

occurring in the abstraction channel. Our rate constants for reactions

2b and 3b do show a very dramatic increase with reagent vibrational

excitation, and support the interpretation of Bartoszek, et al. (7) that

the barrier to exchange for reactions 2b and 3b must be large (over

40 kcal/mole).

* The usefulness of the calculations for reactions Zb and 3b depends

to some extent on the accuracy of the potential energy surface, and in

particular, the requirement of collinearity implicit in these calculations.

Vhile it has long been assumed that the transition states for the ex-

change reactions 2b and 3b are collinear, ab initio calculations (13c)

suggest that the transition state should instead have an HFH angle of

1060, although the height of the barrier should be relatively insensitive

• to that angle, increasing from 47. 1 kcal/mole at 106 ° to 47.6 kcal/mole -

at 180*. Including these non-collinear configurations could easily in-

--
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fluence the observed dynamics of the e--Uiange reactions.

Further, the exact form of the potential energy surface used here

was chosen mainly for its flexibility. There is no reason to believe

that the appearance of the minimum energy path is exactly that shown

in figures I and 2; in fact, it is quite possible that the 40 kcal/mole

barrier is a few kcal/mole less than the correct one, and that the

position of the saddle point used (RH. = 1.97 5 bohr) is smaller than

the correct value (for example, Bender, Garrison, and Schaefer (13a)

calculated it to occur at 2. iS bohr). Thus, the results obtained for the

exchange reactions should not be taken to be more than qualitatively

correct.

-I
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VI. CONCLUSIONS

We have studied on a realistic (high barrier) potential energy

surface the dynamics of vibrational deactivation of HF in collision with

H and D atoms in the exchange channel and also the dynamics of the

H + FH and HF + D exchange reactions. The important features of the

dynamics are as follows:

i) Vibrational deactivation in the exchange channel occurs almost

entirely by single-quantum, non-reactive processes. The rate

of this deactivation varies only weakly with temperature, and, in "

general, increases weakly with reagent vibrational excitation.

The overall dynamics of the deactivation processes are in line

with the predictions of Landau-Teller theory.

2) The rate of the exchange reactions is increased dramatically by

reagent vibrational excitation, although the effective lowering

of the threshold to reaction is less than half the extra energy

associated with each vibrational quantum. Rates of exchange

reactions are characterized by large temperature dependences,

and at high translational energies, broad product state distribu-

tions. The relative inefficiency of vibrational energy in promoting
-*

reaction can be related to the large symmetric stretch vibrational

frequency at the H--F--H saddle point, resulting in a vibra-

tionally adiabatic barrier height which decreases only weakly

with an increase in the reagent vibrational quantum number.

3) The relationship of the calculated results to experimental ones

on these systems is complicated because of the collinear nature of

the theory; nevertheless, the results do support interpretations

that the deactivation of HF(v-&3) by H atoms must be occurring

by processes in the abstraction channel and also support interpreta-

tions of experimental results that the barrier to exchange is quite

* high (2 40 kcal/mole).

*
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A fuller understanding of the dynamics in this system awaits a

study of the dynamics of the abstraction channel (preliminary work on

the H + HF system has been performed (27) ) and the relation of the

results of the two channels by some technique (i.e. information theoretic

one dimensional to three dimensional transformation (28) ). Finally,

additional information from ab initio calculations on the potential energy

surface for the exchange calculation would be useful in insuring a more

accurate description of the saddle point region.

"

4



-25-

ACKN OWLEDGMENTS

We thank Ambassador College for the generous use of its computa-

tional facilities for most of the calculations reported here. Additional

calculations were performed on the Dreyfus-NSF Theoretical Chemistry

4 Computer (VAX 1i/780) at Caltech, which was funded through grants from

the Camille and Henry Dreyfus Foundation, the National Science Founda-

tion (Grant - No. CHE78-20235), and the Sloan Fund of the California

Institute of Technology. One of us (JAK) would like to thank

Dr. Nancy M. Harvey for helpful comments on an earlier version of

this manuscript.

p.



-26-

REFERENCES

1. N. Cohen and J. F. Bott, in: Handbook of Chemical Lasers,

ed. R. W F. Gross and J. F. Bott (WIley-Interscience,

York, 1976), Ch. 2

2. The F + H reaction has been reviewed in J. B. Anderson,
2

Adv. Chem. Phys. 41 229 (980); an extensive review of all

work on the F + H and H + F2 reactions may be found inIiM. R. Levy, Prog. React. Kin. 10., 1, (1979).

3. Recent references include, for F + H

E.%&'rzberg and P. L. Houston, J. Chem. Phys. 72, 4811 (1980),

R. F. Heidner IM, J. F. Bott, C. E. Gardner, and J. E. Melzer,

J. Chem. Phys. 72 4815 (1980); R. K. Sparks, C. C. Hayden,

K. Shobatake, D. M. Neumark, and Y. T. Lee, in : Horizons of

Quantum Chemistry, ed. K. Fukui and B. Pullman (D. Reidel,

Boston, 1980), pp. 91 - 105.

4. For example, for F + H
2

a) S. H. Suck, Chem. Phys. Lett. 77, 390 (1981);

b) M. J. Redmon and R. E. Wyatt, Chem. Phys. Lett. 6 209

(1979); c) J. N. L. Connor, W Jakubetz, and J. Manz, Mol. Phys.

35 1301 (1978); 4) G. C. Schatz, J. M. Bowman, and A.

Kuppermann, J. Chem. Phys. 6 674 (1975).

for H + F :
2*

e) D. C. Clary and J. N. L. Connor, Chem. Phys. Lett. 66,

493 (1979); f) W Jakubetz, Chem. Phys. 35, 129 (1978).

5. See,for example: a) G. M. Jurisch and F. F. Crim, J. Chem. Phys.

7 j 4455 (1981); b) R. L.Wiilkins and M. A. Kwok, J. Chem. Phys.

73 498 (1980); c) R. L.hIkins, J. Chem. Phys. 70, 2700 (1979);

d) M. E. Coltrin and R. A. Marcus, J. Chem. Phys. 73 4390

(1980).

6. a) J. F. Bott and R. F. Heidner III, J. Chem. Phys. 6 1708

E-



-27-

(1978); b) R. F. Heidner HI and J. F. Bott, Ber. Bunsen.

Gesellachaft 81 128 (1977); c) J. F. Bott and R. F. Heidner Ill,

J. Chem. Plxys. 6 2878 (197.7); d) R. F. Heidner M11 and J. F.

Bott, J. Chem. Phys. 63j, 1810 (1975).

7. F. E. Bartoszek, D. M. Manos, and J. C. Polanyi, J. Chem.

Phys. 6, 933 (1978).

8. R. L. Milkins, J. Chem. Phys. 58. 3038 (1975); Mol. Phys. 2%

555 (1975).

9. D. L. Thompson, J. Chem. Phys. 57 4-64, 4-75 (1972).

10. R. L. Thommarson and G. C. Berend, Int. J. Chem. Kin. 6,

597 (1974).

11. G. C. Schatz and A. Kuppermann, J. Chem. Phys. 7 2737 (1980).

12. M. Baer, J. Chem. Phys. 6j 493 (1976).

13. a) C. F. Bender, B. J. Garrison, and N. F. Schaefer ImU,

J. Chem. Phys. _4 1188 (1975); b) P. Botschwina and W. Meyer,
Chem. Phys. 2 43 (1977); c) W. R. Wadt and N. W. VWnter,

J. Chem. Phys. 67 3068 (1977); d) A. F. Voter and W. A.
Goddard Ill, J. Chem. Phys. 5 3638 (1981).

14. P. J. Kuntz, E. M. Nemeth, J. C. Polanyi, S. D. Rosner, and

C. E. Young, J. Chem. Phys. 44, 1168 (1966).

15. H. F. Schaefer II, in: Atom-Molecule Collision Theory, ed. - -

R. B. Bernstein (-Plenum Press, New York, 1979), pp. 45-78.

16. J. M. Bowman and A. Kuppermann, Chem. Phys. Lett. 34,

523 (1975).

17. L. N. Delves, Nucl. Phys. 9 391 (1959); 20 275 (1960).

18. A. Kuppermann, in: Potential Energy Surfaces in Chemistry, ed.

W. A. Lester (U. Calif. Santa Cruz, 1970), pp. 121-129;

in: Abstracts of Papers VII, ICPEAC, (North-Holland,

Amsterdam, 1971), pp. 3-5.

19. G. C. Schatz, J. M. Bowman, and A. Kuppermann, J. Chem.

Phys. 6 3. 685 (1975).



-28-
20. 3. P. Dwyer, Ph. D. Thesis, California Institute of Technology,

1977; A. Kuppermann and J. P. Dwyer, Abstracts of Papers XI,

ICPEA C, (Society for Atomic Collision Research, Japan, 1979),

pp. 888-889.

2t. G. C. Schatz and A. Kuppermann, J. Chem. Phys. 59, 964 (1973). Q
22. J. F. Garvey, J. A. Kaye, and A. Kuppermamn, in Abstracts of

Papers, 1979 Pacific Conference on Chemistry and Spectroscopy,

Pasadena, Ca., p. 39.

23. See, for example 3. D. Lambert, Vibrational and Rotational

Relaxation in Gases (Clarendon Press, Oxford, 1977).

24. W. C. Gardiner, Jr., Acc. Chem. Res. 1j, 327 (1977).

25. J. A. Kaye, J. P. Dwyer, and A. Kuppermann, manuscript in

preparation; a preliminary account of this work was presented at

the 1979 Pacific Conference on Chemistry and Spectroscopy,

Pasadena, Ca.

26. G. P. Quigley and G. J. Wolga, Chem. Phys. Lett. 27 276 (1974). '4

27. J. A. Kaye and A. Kuppermann, unpublished results.

28. R. B. Bernstein and R. D. Levine, Chem. Phys. Lett. j .14

(1974); J. N. L. Connor, W.Jakubetz, J. Manz, and J. C.

Abhitehead, Chem. Phys. 39 395 (1979).

* s.
* 'I



--i-
Table 1. Parameters for Rotating Morse cubic spline surface for

H + FH -- Hr +H-@

RI0 =R2 -7.0 bohr

(deg) 1 (8) (bohr) P(&) (bohr )eq

0 5.267 1.163

6 5.296 1. 149

15 5.453 1.122

30 6.079 1.012

39 6.742 0.9022

45 7.106 0.894

51 6.742 0.9022

60 6.079 1.012

75 5.453 1.122

84 5.296 1. 149

90 5.267 1. 163

*-0

* '0
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TabIl Selected State-ta-Stat. and Summed Deactivation Rate

Constants for th Proceses HF(v) + H' -4 HF(v'4( v) + H' (NR)

and H2F(v) + H -- t H + FH' (v' < v) (R)

All rate constants are in units of cm*molecude' *eec-

T a300 K T =650KX T - wooK

V--vI NR R NR R NR R

1 0 1.185(2) 4.120(-16) 2.065(2) 1.821(-7) 2.782(2) 3.768(-4) .

2 0 2.854(0) 5.172(-10) 4.192(0) 5.392(-5) 5.437(0) 5.097(-3)

2 1 1. 189(2)' 7.983(-13) 2.657(2) 2.108(-S) 3.780(2) 1.640(.2)

3 0 1.082(-1) 1.195(-4) 1.741(-l) 3.198(-3) 2.210(-1) 2.501(-2)

3 1 6.322(0) 3.548(-7) 1.098(1) 1.9S7(-3) 1.549(1) 9. SC Z(- 2)

3 2 3.992(2) 8.586(-9) 5.552(2) 5.4S4(-4) 7.4*12(2) 1.706(-1)

4 0 1.546(-3) 3.70S(-3) 5.533(-3) 1.522(-2) 2.516(-2) 8.998(-2)

4 1 1.849(-1) 1.649(-2) 4.567(-1) 1.226(-1) 8.098(-1) 4.982(-1)

4 2 5.746(0) 8.555(-5) 1.612(l) 3.034(-2) 2.595(1) 7.082(-1)

4 3 6.039(1) 2.946(-6) 2.621(2) 4.648(-3) 5.269(2) 6.205(-1)

5 0 6.393(-4) 1.62S(-2) S.211(-3) 7.784(-2) 3.764(-2) 3.378(-1)

5 1 1.727(-2) 1.045(-1) 6.S70(-2) 3.626(-1) 2.498(-1) 1.280(0)

5 2 4.121(-1) 3.043(-1) 1.345(0) 1.103(0) 3.083(0) 3.054(0)

5 3 1.151(1) 2.854(-3) 3.588(1) 4.064(-1) 5.840(1) 3.595(0)

5 4 1.098(2) 1.043(-4) 4.465(2) 1.528(-2) 7.919(2) 4.774(-1)

I all 1.185(2) 4.120(-16) 2.06S(2) 1.821(-7) 2.782(2) 3.768(-4)

2 all 1.197(2) S.180(-10) 2.699(2) 7.500(-5) 3.834(2) 2.150(-2)

3 all 4.056(2) 1.199(-4) 5.664(2) 5.701(-3) 7.569(2) 2.906(-1)

4 all 6.605(1) 2.028(-2) 2.786(2) 1.728(-1) 5.537(2) 1.917(0)

5 all 1.217(2) 4.279(-1) 4.838(2) 1.965(0) 8.537(2) 8.744(0)

gas kin. 6.433(4) 9.469(4) 1.174(5)

*Numbers in parentheses represent powers of W0 by which the written

number should be multiplied.

. . . . . . .
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Table 3. Selected State-to-State Rate Constants for the Processes

* HFMv + D -~HF(v< v) + D (NR)

HFMv + D -~H + FD(v') (R)

AUl rate constants are in units of cm*molecule *ec

V4 NR R NR R NR R

1 0 3. 421 (1) 1. 265(-if4) 6.267(t) 5.584(-7) 8.425(f) 1. 266(-3)

*2 0 9.14i(-1) 6.0i15(-12) 1.812(0) 6.574(-6) 2.537(0) 4.635(-3)

2 1 6. 476 (i) 3. 548(-13) 1. 123(2) 1.454(-S) 1.556(2) 1. 437 (- 2)

3 0 6.875(-2) 4. 113(-5) 1.1i49(-i) 1.041(-3) 1.439(-i) 7.812(-3)

3 1 7.950(0) 3.514(-6) 1. 044(1) 7.205(-4) 1.178(t) 1.997(-2)

3 2 9. 057 (1) 1. 441(-7) 1. 592(2) 1. 944(-4) 2.106(2) 1.950(-Z)

3 3 2.837(-9) 6.343(-5) 1.705(-2)

3 4 1. 356(-10) 1.426(-5) 5.357(-3)

gas kin. 4.656(4) 6.855(4) 8.499(4)

*Nuimbers in parentheses represent powers of 10 by which the written

number should be multiplied.
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FIGURE CAPTIONS

Figure 1. Plot of the potential energy V along the minimum energy path

* as a function of the reaction coordinate s for the reaction H' + FH ..

* H'F + H. s = 0 at the barrier (along the H--F--H symmetric stretch

line). The energy levels of the isolated HF reagent molecule are shown

on the left side of the plot. For comparison purposes, those of the

* isolated DF molecule are shown at the right.

* Figure 2. Contour plot of the potential energy surface for the reaction

I H' + FH "~ H'F + H in the Delves coordinate system. Equipotentials

are drawn every 0.3 eV. The origin of energy is the bottom of the

isolated HF well. A cross is drawn at the saddfle point, and the mini-

mum energy path is indicated by a dashed line.

Figure 3. Plot of rate constants k I for total reactive (R) and

non-reactive (N) deactivation in the collision H + FHMv -" H + FH(v'< v)

* at T =300, 650, and 1000 K as a function of the vibrational state v of the

4,

reagent molecule. All curves for reactive collisions are indicated by

solid lines; those for non-reactive ones are indicated by dashed, dotted,

* and dashed-dotted lines, respectively, for T = 300, 650, and 1OOO K.

Figure 4. Arrhenius plot of state-to-state rate constants k .,fo r the

reactive (superscript R) and non-reactive (superscript N) collisions

H + FH(v = 2) -- + H + FH(v'=O, 1). Curves for non-reactive transitions

are indicated by solid lines; those for reactive ones are indicated by

6 dashed lines.

Figure 5. Plot of high temperature (700 - 1000 K) Arrhenius activation
N

energies E (v-sv-n) for n-quantum non-reactive deactivating collisions
a

".]

HFgure5 +. H' ot Fvn safnto of the potential energy Vlogheinumn Erg pat]

ofiteH~)egn. The quantum number of eacioltehH reagent s tleate ishw .

indicted onfthe upper abscssa Differentrisne puoes, areosed o coec

each .Coturpo of the dt poins:n=n-soilneg 2-dsredceinor theredotton

line; n=4 dashed-dotted line. For n=5, only one data point exists; it

Fot
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is marked by a plus sign.

Figure 6. Plot of high temperature (700-1000 K) Arrhenius activation
R

energies E (v--v-n) for n-quantum -.-sactive deactivating collisions
a

HF(v=1-5) + H' -+ H + FH'(v-n) as a function of the internal energy

Eint of the HF(v) reagent. All line types and markings are as in

figure 5. /

R
Figure 7. Plot of the probability HF(v) + H of the reaction HF(v) + H'

-- t H + FH' as a function of the initial translational energy of the reagents

* Etr for v 0, 1,, 3. "
R

Figure 8. Histogram plot of the fraction of reaction product F

for all possible product states v' for the reaction HF(v=I) + H' -

4. H + FH'(v') at three values of the initial reagent translational energy

tr trE . Bars marked a,b, and c are for E = 1.5361 eV, 1.9443 eV,

and 2.4068 eV, respectively.
RFigure 9. Histogram plot of the fraction of reaction product F I

for all possible product states v' for the reaction HF(v=2) + H' --

H + FHI'(v') at three values of the initial reagent translational energy

E tr. Bars marked a,b, and c are for Etr = 1.3161 eV, 1.6154, eV,

* and 1. 9964 eV, respectively.

Figure 10. Plot of the average fraction of product energy going into

vibration < f RV> as a function of the initial reagent translational energy

E for v = 0, 1, 2, 3. Results for different values of v are indicated by

different symbols: v=0 - open circles; v=1 - open squares; v=Z - open

triangles; v-3 - filled circles. Lines correspond to the value expected if

the reaction were vibrationally adiabatic. Results are shown only for

energies where the probability of reaction is significantly greater than

zero.

Figure It. Plot of the probability P f the reaction HF(v) +
D + FH(v)

D -- DF + H as a function of the initial reagent translational energy
tr

E for v = 0, 1, 2. The solid line is for v =0; the dashed line is for

v = 1; and the dotted line is for v = 2.

L
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Figure 12. Histogram plot of the fraction of reaction product FR,

for all possible product states v' for the reaction HF(v=i) + D --% H +
tr

FD(v') at three values of the initial reagent translational energy E
tr

Bars marked a,b, and c are for Er i.5361 eV, 1.7538 eV, and

1. 9443 eV, respectively.

Figure 13. Histogram plot of the fraction of reaction product FR,

for all possible product states v' of the reaction HF(v=2) + D --
tr

H + FD(v') at two values of the initial reagent translational energy E
trBars marked by a and b are for E 1.3i6i eV and 1.5066 eV,

respectively.

Figure 14. Plot of the average fraction of product energy going into

vibration fR as a function of the initial reagent translational energy
v

E for v = 0, 1, 2. Symbols and Lines have their same meaning as in

figure 10.
NFigure 15. Landau-Teller plot of rate constants k (HF + H') forv, v-i

single-quantum non-reactive deactivating collisions HF(v) + H' -4

HF(v-i) + H' for v=i-5. The temperature is indicated on the upper

abscissa. Different line types are used for each v: v=i - solid line;

v=2 - dashed line (large dashed); v-3 - dotted line; v=4 - dashed-

dotted line; v=5 - dashed line (small dashes).
NFigure 16. Landau-Teller plot of rate constants k (HF + D) for

v, v-i
single-quantum non-reactive deactivating collisions HF(v) + D -4

HF(v-1) + D for v = 1, 2, 3. The temperature is indicated on the upper

abscissa. Different line types are used for each v: v=I - solid line;

v=Z - dashed line; v=3 - dotted line.

Figure 17. Plot of the threshhold energy E th for the vibrationally pv
adiabatic reactions HF(v) + H' .- H + FH'(v) (solid line) and HF(v) +

D --# H + FD(v) (dashed line) as a function of the internal energy EDt

of the reagent HF molecule. Open circles and squares, respectively, are

used to plot the original data points for the HF + H' and HF + D systems,
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respectively. The quantum number of the reagent HF state is indica-

S ted on the upper abscissa.
th

Figure i8. Plot of the threshhold energy E for the vibrationally

adiabatic reaction HF(v) + H' a-- H + FH'(v) as a function of the

vibrationally adiabatic barrier height AV , defined in eq. i5 of the

text for v = 0-4. The open circles mark the actual data points. The

values of v are indicated on the upper abscissa.
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Barrier Height Dependence of Dynamics in the Collinear H + FH(v)

and D + FH(v) Systems. a)

b) cJack A. Kaye , John P. Dwyer c ) , and Aron Kuppermann

Arthur Amos Noyes Laboratory of Chemical Physics d)

California Institute of Technology, Pasadena, California 91i25 0

(Re ceived )

Collinear coupled-channel quantum mechanical calculations

0 have been performed on the title systems on potential energy

surfaces with barriers to reaction of i. 5, 5, to, 20, 30, and

40 kcal/mole. We have examined the differences in the dyna -

mics on the different surfaces, emphasizing the rate and mech-

anism of vibrational deactivation of HF in H + FH(v) collisions

and the influence of reagent vibrational excitation on reaction

probabilities and product state distributions in the D + FH(v)

reaction. The rate of vibrational deactivation decreases as

the barrier height is increased for low barrier height surfaces,

but becomes relatively insensitive to barrier height at higher

barrier heights at the temperatures studied. On the lower

barrier surfaces vibrational deactivation occurs mainly in

multi-quantum reactive transitions, while for higher barrier

surfaces it occurs in single-quantum non-reactive transitions.

In the D + FH(v) reaction, reagent vibrational excitation re-

duces the translational energy threshhold by an amount smaller

than the vibrational quantum and can lead to different product

state distributions depending on the potential energy surface.

Quantum mechanical resonances observed on the low barrier

surfaces can be understood by reference to vibrationally

adiabatic correlation diagrams.

~-
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I. INTRODUCTION

The dependence of the dynamics of chemical reactions on the

potential energy surface governing the motion of the nuclei has been

the subject of substantial attention. In a pioneering series of papers,

Polanyi and collaborators used the classical trajectory technique to

study how the dynamics of the general class of reactions

A + BC(v, J) -- AB(v',J')+C ()

varied with changes in the potential energy surface (i). Features of

particular interest have been how the disposal of energy in exoergic 0

reactions or the usefulness of various forms of internal energy in

endoergic reactions depends on the position of the saddle point on

the surface. Other workers have also explored the relationship be-

tween the potential energy surface and the dynamics obtained from

classical mechanical calculations for both reactive and non-reactive

processes (2).

* For quantum mechanical calculations, such studies have been

far fewer in number. As new potential energy surfaces are developed

over the years, dynamical calculations are frequently performed,

providing information on the sensitivity of dynamics to surface

parameters. For example, for the H + H 2 system and its D substitu-

ted analogs, in exact and approximate quantum calculations (in one,

two, and/or three dimensions) (3), surfaces studied include the

scaled SSMK(4), the Porter-Karplus (5), and the SLTH (6) ones,

among others. For the F + H2 system, a variety of potential energy

surfaces, both semi-empirical (7) and ab initio (8) have been used in

collinear quantum mechanical calculations (7b, 9). Similar studies

have been carried out on the I + H2 (10), 0 + H (it), and I + HI
2 2

(12) systems, among others.

In most of this work, attention has been focused on the dynamics

of chemically reactive processes. If one is to understand the full

dynamics of potentially reactive chemical systerms, however, one
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must also understand how the dynamics of non-reactive processes

depend on the nature of the assumed potential energy surface. For

example, in studying the dynamics of the collisional deactivation of

a vibrationally excited molecule (such as that present in a chemical

laser system), the quantitis most of interest are the rates of vibra-

tional deactivation and the number of quanta transferred . Rabitz

and co-workers (13) have studied the sensitivity of energy transfer

processes to the nature of the assumed potential energy surface

in non-reactive collisions.

In this work we study the dynamics of the collinear systems

HF(v) + H' -- HF(v') + H' (2a)

H + FH'(v") (2b)
HFMv + D HF(v') + D (3a)

H + FD(v") (3b)

by coupled-channel quantum mechanical calculations on six related

potential energy surfaces. These surfaces are identical except for

their profile along the minimum energy path, and have barriers of

1.5, 5, 10, 20, 30, and 40 kcal/mole. The first is close to the barrier

of the Muckerman V surface (7b) used in a previous collinear quan-

tum mechanical study of these systems (14); the last is closest to the

barrier heights indicated by the most recent experiments (15) and

also by ab initio calculations (16). The results of the calculation on

this surface have been presented separately (17).

In our calculations we will examine the effects of the change of

barrier height on various features of the H or D atom induced col-

lisional deactivation of HF(v), including the overall rate of deactiva-

tion, the fraction of deactivation occurring by reactive and non-

reactive processes, the relative importance of single and multi-

quantum transitions, and the temperature dependence of these

quantities. We will also consider the general class of reactive

processes (2b and 3b) and the role of quantum mechanical resonances

. ...
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on the different surfaces.

The outline of this paper is as follows. In section 2 we discuss

potential energy surfaces used in the calculations, and in section 3

we briefly review some important aspects of the calculations per-

formed. The results obtained will be presented in section 4, and

their significance will be discussed in section 5. Finally, in section

6 we will summarize the results and conclusions obtained.

,0;

*N

*B- !

I
*1
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n2. POTENTIAL ENERGY SURFACES

The potential energy surfaces used in this study are all of the

highly flexible rotating Morse-cubic spline form (18), in which the

potential energy as a function of the internuclear coordinates RAB

and RBC is given by the expression 4,

V(RAB, REC) = D(e)((i - exp(-P(O )( eq() -)))2 I) +D(I=0) (4)

where
- 0 - 0

Gtan ((RAB RAE )/(RBc RB (5)

and
02 0R ))/=(RAB RAB°) + (RBc 1/2 (6)

0 0
(RAE IRBC ) is the point from which one swings the Morse oscil-

lator, whose parameters are thus functions of the angle ; when R
AB

> R or when R C> R the potential is just that of a Morse
AB BC B 0 0

oscillator. Normally, the point (R , R ) is far up the dissocia-
AB BC

tive plateau, that is, both R and R are large. The coordinate
AB BC

system and definition of terms are indicated schematically in flgure 1.

The Morse parameters (() and P(9D) are given at a small num-
eq

ber of values of the swing angle , and a cubic spline interpolation is

then performed. A similar interpolation could be performed for

D(f) however, in this case we assume it to be given by a Gaussian

D(O) = D(=0) - (A + Bexp(-C(n/4 -e)2) (7)

Values of the constants A, B, and C for each of the surfaces used

are given in Table 1; values of J (f) and P(O) have been presented
eq

elsewhere (17).

The values of A (8) and P(O) were obtained by numerically
eqfinding their values on the Muckerman V surface (7b) in the exchange

channel and then splining together; the values for A, B, and C were

first obtained from the Muckerman V surface at 3 values of 0 (0,

22*, and 45*). To increase the barrier height, only parameters

B and C in eq. 7 were changed.
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For RAB >RAB0 (R small) or RBC >RBC (RAB small), the

potential energy was taken to be independent of RAB and RB CO
respectively. This produced a slight upward shift (-0. 0168 kcal/mole)

in the bottom of the HF diatomic well relative to its dissociation energy.

0 For use in the calculations reported here, we have constructed '0

surfaces with barrier heights of 1.5, 5, 10, 20, 30, and 40 kcal/mole.

We have plotted the 40 kcal/mole barrier surface in the Delves mass

scaled coordinate system (19) for the HFH system in figure 2. In

figure 3 we display the vibrational energy levels of HF and DF along

with the energies of the barriers on the six surfaces used.

0
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III. NUMERICAL ASPECTS

Numerical solution of the Schrodinger equation has been performed

by the coupled-channel method of Kuppermann (20). 20 - 24 basis

functions were used in these calculations, and unitarity of the

scattering matrix was obtained to better than 3% at nearly all energies

studied; at most it was obtained to better than i%. For those calcula-

tions where unitarity was not obtained to 3%, we do not include the

results in our analysis.

Reactions 2a and 2b were studied in the energy range up to 2. 94

eV above the zero-point energy of HF, while reactions 3a and 3b

were studied up to 2.45 eV above the HF zero-point energy. The

smaller range in the latter calculation was due to the smaller vibra-

tional energy spacing of DF (see figure 3) than HF, which gives rise

to more open channels at a given total energy than at the same total

energy in the HF + H system.

State-to-state rate constants have been calculated from the transi-

tion probabilities obtained in the scattering calculations by the

relationship

k..(T) =(2w* bkT)i/2 P (Etr )exp(-E tr/kbT)dEtr (8)ki()= 2Ja, bc bso i

where P.. is the probability for the transition from state i to state j,
tr 13

E is the initial reagent relative translational energy of the collision,

A is the reduced mass of the a, bc collision pair, and kb is
a, bc

Boltzmann' s constant.
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IV. RESULTS

We have studied a number of aspects of the dynamics of the col-

linear HFH and DFH systems on six different, but related, potential

energy surfaces, and will try to present some of the most important

features of our results in this section. We will consider the following

questions:

1) What are the relative rates of collisional deactivation of

vibrationally excited HF and how do they depend on the surface used

and on the reagent vibrational state ?

2) How do deactivating processes occur (single vs. multi-

quantum, reactive vs. non-reactive) on the different surfaces ?

4 1 3) How do these quantities vary with temperature?

4) How do the dynamics of the reactive processes (energy

thresholds, product vibrational state distribution, effect of reagent

vibrational excitation) depend on the surface ?

5) What is the nature and magnitude of the isotope effect on

going from the HFH to the DFH system?

6) How important are quantum mechanical resonances on the

different surfaces, and how do their position and strength vary as

the barrier height is increased?

A. VIBRATIONAL DEACTIVATION

The rate of vibrational deactivation varies significantly as the

barrier height of the potential energy surface varies. This may be

seen in figures 4 and 5, in which the overall rate of vibrational deac-

tivation in the H + FH(v) system is plotted as a function of the barrier

height of the surface for v = 1 -5 at 300 and 650 K, respectively.

There are three important features of these figures. First, for

low barrier height surfaces, the rate of Ut en decreases

rapidly as the barrier height of the surface increases. For example, .0

in figure 4 one sees that as the barrier height increases from 1. 5 to
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10 kcal/mole, the overall deactivation rates decrease by nearly two

orders of magnitude. As the barrier height is further increased be-

yond 10 kcal/mole, however, the deactivation rates no longer continue

to decrease; instead, they remain relatively constant. Second, the

variation in the deactivation rates with reagent vibrational excita-

tion differs on the low and high barrier surfaces. In the former

region, the deactivation rate in general increases as the reagent HF

molecule excitation is increased, while in the latter region there ap-

pears to be no clear correlation between reagent excitation and de-

activation rate. Third, the barrier height at which the transition be-

tween low barrier and high barrier behavior occurs is temperature

dependent. In comparing figures 4 and 5, for example, we can see

that at 300 K the division seems to occur at 10 kcal/mole; at 650 K it

occurs at 20 kcal/mole.

This behavior is also seen to be independent of isotopic substitu-

tion. In figure 6 we present a plot of deactivation rates in the

HF(v) + D system at 300 K. In this figure we only include FD states

whose quantum number v" is smaller than that of the reagent HF(v)

molecule.

We next consider the details of the deactivation process (those

features mentioned in item 2 above) in the HF(v) + H system. Plots
(i)

of the fraction f of deactivation occurring by single-quantum transi-v-
tions as a function of the barrier height of the surface are shown in

figure 7 for v = 2-5(for v=i all deactivation occurs by single quantum

transitions) at 300 K. Clearly this quantity varies substantially as

the barrier height is increased although when the barrier is above

20 kcal/mole, the fraction for v =2 and 3 is close to unity and thus

nearly independent of the barrier height. In general, as the barrier

height increases, the importance of single-quantum deactivation in-

creases substantially till on the 40 kcal/mole surface, it accounts
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for more than 80% of the deactivation, even in collisions of v -

4 and 5.
R

In figure 8 we plot the fraction f of deactivation occurring by
v

reactive processes (that is, those of te type 2b rather than Za de-

fined above) as a function of the barrier height for v = I to 5 at 300K. 0

At low barrier heights, reactive deactivation is clearly the rule, as

for all initial states considered, over 750 of the deactivation rate on

the 1. 5 kcal/mole barrier surface occurs by reaction. On high

barrier surfaces, the deactivation occurs totally by non-reactive

processes. From the arrows in figure 8showing the vibrational ener-

gy of the isolated HF(v) molecule, one can see that the v = 4 and 5

levels of HF already have sufficient energy to overcome any of the 0

barriers studied here. Thus, the absence of reactive deactivation

here indicates one of two things: either translational and vibrational

energy are so weakly coupled that the latter is not useful in promo-

ting reaction, or that reaction is possible but that it occurs over-

whelmingly by a vibrationally adiabatic proces. Examination of

state-to-state reaction probabilities indicates that the former expla-

nation must be the correct one, as at all but very high translational

energies the vibrationally adiabatic reaction pjobability is smaller

than the deactivating ones. For example, on the 40 kcal/mole sur-

face, just above the opening of the HF(v=4) level, the state-to-state

R R 5
reaction probabilities P and P are over 10 times greater than

atsoe .4 40 41 R47R R4
P at some 0.4 eVabove the opening, P 4 2  is nearly 10 times
greater than P Only at translational energies above 1. eV

R 44
does P44 become the greatest of the reactive probabilities. _-0

While figure 7 gives some feeling as to the importance of multi-

quantum transitions, it does not provide an indication of the relative

importance of the different possible multi-quantum transitions. To

aid in assessing their importance, in figure 9 we plot the average

--
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number <Anvdeof vibrational quanta lost in deactivating collisions,

both reactive and non-reactive, as a function of the barrier height

for v = 2 - 5 at both 300 K (solid lines) and 1000 K (dashed lines).

This quantity is given by the formula

<A v-0 (v - v')kT
vd _______________ (9)

v de rJT

T
where k is the total (sum of reactive and non-reactive) deactiva-

tion rate constant for the v -- * v' transition. Since the rate constants

vary with temperature, so will <An ) . For a given reagent
v de

vibrational level v, the maximum value this quantity may have is also

v, as would be the case when all deactivation occurred by a v-quantum

process, in which only ground state molecules were formed.

From figure 9 we see four main features. First, this average

number of quanta lost is always less than its maximum value, by an

amount ranging from almost 4 quanta for v = 5 on the 40 kcal /mole

barrier surface to I/2 quanta for v = 2 on the 1. 5 kcal/mole barrier

surface. Second, this quantity decreases as the barrier height of the

surface increases, till it is very close to I for all reagent states on

the 30 kcal/mole barrier surface. Third, this quantity is strongly

tempe rature dependent, with the temperature dependence in the 300 -

1000 K range having its greatest value for the intermediate (10 - 20

kcal/mole) barrier surfaces. Fourth, this quantity increases with

v. Thus, we see that on low barrier surfaces, not only are multi-

quantum transitions likely, but those multi-quantum transitions which

transfer more than 2 quanta of vibrational energy are quite likely.

Finally, we wish to consider the temperature dependence of the

rate constants for single-quantum deactivation as a function of the

reagent vibrational state and the barrier height of the potential 1

energy surface. To show this temperature dependence, we calculate

Ii

' 'a
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Arrhenius activation energies (Ea v ' vi) for these rate constants in
a

the high temperature (700 - 1000 K) and plot them as a function of

reagent internal energy in figure 10. These are the slopes of the

corresponding Arrhenius plots (logarithm of rate constant vs. inverse

* temperature), which have been found normally to be reasonably linear

in the low (200 - 400 K) and high (700 - 1000 K ) temperature regions,

but curved in between. The activation energies calculated increase as

the barrier height of the potential energy surface increase s and, in

general, decrease as the vibrational excitation of the reagent in-

creases. This decrease is far less than the increase in internal ener-

gy, however. For example, the activation energy on the 40 kcal/

mole barrier surface decreases only by some 16 kcal/mole as one

adds over 40 kcal/mole of internal energy. This is another manifes-

tation of the relative inefficiency of vibrational energy in promoting

reaction.

B. REACTIVE PROCESSES

In this section we will examine a few aspects of the dynamics of

reactive processes in the HF(v) + D system. This system is a bet-

ter one for experimental study than the HF(v) + H system, as the

reactive and non-reactive processes can be easily differentiated.

In fact, experiments on this system taking advantage of the mass

difference between the H and D atoms have already been performed

(15). The aspects of the dynamics of the reactive processes which we

will mainly consider are the gross features of the reaction proba-

bility and the vibrational state distribution of the DF product formed

* in the reaction. 0

We examine the threshold region of the total reaction probability

for reaction of ground state HF with D atoms on the six surfaces in

figure It. In this figure, we plot the reaction probability vs. energy

curves only in the threshold region, in which the probability increases
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rapidly and smoothly from zero to one. We also indicate in the figure

the translational energy equal to the classical barrier height of the

six surfaces studied. Note that this quantity is measured with respect

to the bottom of the HF well, while the translational energy is measured

with respect to the HF zero-point energy. The important points to

be learned from the figure are as follows. First, for all surfaces the

reaction probability does rise smoothly from zero to one over a fairly

narrow range of energy. Second, the threshold energy (the energy at

which the probability of reaction first becomes large, say 0. 02) is

always smaller than the classical barrier height by an-amount which

increases as the barrier height increases (some 0.04 eV for the i. 5

kcal/mole barrier surface to some 0. 23 eV for the 40 kcal/mole

barrier surface). Third, the width of the threshold region also in-

creases as the barrier height increases (from some 0.03 eV for the

1. 5 kcal/mole barrier surface to some 0.25 eV for the 40 kcal/mole O

barrier surface).

In figure 12 we plot the total reaction probability for reaction of

HF(vi1) with D atoms vs. energy in the threshold region on the

six surfaces. While this plot is fairly similar to that in figure 11,

there are two major differences. First, the probability vs. energy

curves have shifted to lower energy. This is reasonable, as the

vibrational energy should be at least partially effective in reducing

the translational energy threshold for reaction. One sees that its

effectiveness is limited, however, as the translational energy thresh-

old has been reduced by no more than 0.2 eV on vibrational excitation,

even though the vibrational quantum is 0.49 eV. Second, the behavior

of the probability vs. energy curves at the high energy end of the

threshold region is different than it is in figure II for the lower

barrier (1. 5, 5, 10 kcal/mole) surfaces. In these cases, we see

that the reaction probabilities do not stay near unity as they do in

K.
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figure iI; instead, they reach a maximum somewhat less than unity

and then decrease with increasing energy. On the higher barrier sur-

faces, behavior is similar to that in figure 11. We will discuss later

possible explanations for the more complicated nature of the dynamics

on the low barrier surfaces.

The next aspect of the reactive processes which we will consider

is the vibrational state distribution of the DF formed in the reaction,

and how it varies with the barrier height of the potential energy sur-

face and with reagent vibrational excitation. The quantity which we

will frequently consider in order to avoid having to look at the entire

product state distribution is the average fraction <f) of product

energy going into product vibration

max

<f -v (10)
v

Vmax R

V 0V

In figure 13 we plot for energies at which the reaction probability

is appreciable (more than 60%) this quantity for reactions of ground

state HF on the 1.5, 20, and 40 kcal/mole barrier surfaces. From

this figure we see that the barrier height of the surface has a major

influence not only on the translational energy threshhold for reL ction,

but also on the product state distribution. As the barrier height in-

creases, there is less vibrational excitation of the DF product. We

also note that <f is a much smoother function of the energy for the

higher barrier surfaces (20, 40 kcal/mole) than it is for the low

(1. 5 kcal/mole) barrier surface. Some of the lack of smoothness

in the plot for that surface can be attributed to at most very small

translational energy thresholds for vibrational excitation into newly

opened states. The arrows on the abscissa of figure 13 indicate the

energies at which DF product states become open, and we see that

*
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the curve for the 1. 5 kcal/mole barrier surface rises rapidly at

almost identically those energies. This is particularly true at the

energies where the DF(v=I, 2, and 3) state become open. No such

rapid increases are seen for <f on the high barrier surfaces, sug-

gesting that reaction to higher vibrational energy product states

occurs with a large translational energy threshold.

To determine how reagent vibrational excitation influences the

vibrational state distribution of the DF product, we examine 4fv)

for v = 0-4 at a variety of energies on the different potential energy

surfaces. The values obtained are given in Table 2. In this table

we only consider those combinations of potential energy surface,

energy, and reagent vibrational state for which the reaction probabili-

ty has gone through its initial rise; on the high barrier surfaces we

will only be able to examine the few lowest reagent vibrational states,

as the translational energy thresholds for reaction are too great

for reaction to occur in the energy range studied.

From the data in table 2, we can see that the influence of reagent

vibrational excitation on the product state distribution depends strong-

ly on the total energy and on the barrier height of the potential surface.

On high barrier surfaces, reagent vibrational excitation leads to a

higher fraction of the product energy going into vibration, whereas on

low barrier surfaces, it leads to no particular behavior. In a number

of cases one actually sees less product vibrational excitation in col-

lisions of vibrationally excited reagents (see for example the 2. 410

eV results on the t. 5 kcal/mole barrier surface and the 2. 002 eV

results on the 5 kcal/mole barrier surface). On the intermediate

barrier surfaces, one can see both types of behavior. For example,

on the 10 kcal/mole barrier surface, reaction of vibrationally excited

HF leads to a more highly excited DF distribution than does that of

ground state HF at low energy (1. 186 eV), but leads to a less highly
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excited one at higher energy (2.410 eV).

We can also obtain additional information about how the product

state distribution depends on the potential energy surface from the

data in table 2, especially for reactions of vibrationally excited

molecules (in figure 13 we considered only reaction of ground state 0

species). It appears that this dependence is itself energy dependent.

At the lowest energy considered (1. 186 eV), while (f 0 > decreases

as the barrier height is increased, (f,> increases. At most other

combinations of energy and reagent vibrational state, < f > is essen-

tially independent of the barrier height (or more precisely, depends

on the barrier height in no easily recognizable way) on low barrier

height surfaces, but decreases substantially as the barrier height

further increases.

The distribution of the DF product states for reaction from HF(v=

0, 1, and 2) at a total energy of 2.410 eV is shown in figure 14 in the

form of histogram plots. In these plots, the height of the bar is pro-

portional to the reaction probability to the indicated product state.

We note here the most important features of these plots. For the

ground reagent state, as the barrier height increases, the product

state distribution as a whole shifts to lower vibrational states, until

on the 40 kcal/mole barrier surface, 75% of the reaction occurs by a

vibrationally adiabatic process. On the low barrier surfaces the

product state distribution is quite broad, being spread out over 3-5

product states. For the v I reagent state, the product distribution

also shifts to lower vibrational states as the barrier height increases,

but the shift is not as dramatic as for ground state reactions. This is 0

true for two reasons. First, on the 40 kcal/mole barrier surface the

reaction is primarily vibrationally adiabatic; hence the distribution

for that surface is peaked about v = i and not about v=0 as in the ground

state reaction. Second, the product state distributions on the low

SJ
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barrier surfaces are wider than for ground state reaction, so that

there is appreciable population of the DF(v'=Z) state on all surfaces.

An interesting feature is that at this energy, the probability of vibra-

tionally adiabatic reaction on the 30 kcal/mole surface is significantly

smaller than the probability for rea ction with an increase or decrease

of one in the vibrational quantum number. Thus, one cannot simply

assume that the re ction is vibrationally adiabatic on high barrier sur-

faces at all energies. The product state distributions in reactions of

HF(v=2) are even broader than those for reactions of HF(vi1), and

are also somevh at irregular (they are not smoothly peaked about one

quantum state). We note that some of the state-to-state reaction

probabilities on the low barrier surfaces vary fairly rapidly with

energy at high energy; it is this variation that gives rise to the

irregular structure of the plot of (f 0 ) in figure 13.

C. QUANTUM MECHANICAL RESONANCES

The existence of low energy resonances in the collinear HF-

system (Muckerman V surface) has been noted previously (14), and

here we consider some aspects of the resonance structure on the

surfaces used. We are particularly interested in how the resonances

change in position and intensity as the barrier height is raised. In

figures 15-18 we present plots of state-to-state probabilities of

reaction 3b on the 1. 5, 5. 10, and 20 kcal/mole barrier surfaces,

respectively, in the region of energy containing the threshold for

reaction from v = 0 and continuing up some 0.4 eV above that. The

plots strongly suggest the existence of a resonance in these systems.

The Tesonance is strongest on the 1.5 kcal/mole barrier surface, and

is substantially weaker on the 10 kcal /mole barrier surface. On the

20 kcal/mole barrier surface it has almost totally disappeared; it is
R R

seen only by the formation of a small shoulder in the P0 0  and P0 1I--

H' '..
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R
curves. There is no minimum in P 0 0 as there is on each of the

lower barrier surfaces. It is also interesting to consider the effect

of isotopic substitution on the strength of the resonance. To do this,

we plot state-to-state probabilities for reaction Zb on the 10 kcal/mole

4P barrier surface in figure 19. It is quite clear that the resonance is

much stronger in this system than it is in the D substituted system.

There are two other interesting features of figure 19. First, there

is a small dip in the reaction probability shortly after it first reaches

unity. At higher energies the probability does return to one, and stays

there until the resonance. Second, the resonance occurs at a transla-

tional energy of 0. 735 eV, which is some 0. 1 eV greater than the

energy of the weaker and broader resonance in the D + FH system.

We will discuss these features of the dynamics in the ensuing dis-

cussion section.

"
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V. DISCUSSION

The dynamics of the collinear HFH and DFH systems are shown

to depend substantially on the barrier height of the potential energy

surface used. As the barrier height is increased a number of im-

portant changes in the dynamics take place. In collisions of vibra-

tionally excited HF molecules, the overall rate of vibrational deacti-

vation of the HF decreases for a while as the barrier height increases;

further increase of the barrier height makes little change in the deacti-

vation rate. The value of the barrier height at which this takes place

is a function of temperature (increasing as the temperature is in-

creased). On low barrier surfaces, the bulk of the deactivation oc-

curs by reactive (and multi-quantum) processes; on high barrier sur-

faces, it occurs by non-reactive (and single-quantum) processes.

On the lowest barrier surfaces (1. 5 and 5 kcal/mole), what non-

reactive deactivation there is occurs from both single and multi-quan-

turn transitions at 300 K; the higher the reagent vibrational state, the

*greater the contribution of multi-quantum non-reactive deactivation

* processes. On the highest barrier surfaces (30 - 40 kcal/mole),

reactive deactivation occurs mainly by multi-quantum transitions at

300 K, for example two quantum processes in collisions of HF(v:3)

with H and 3 and 4 quantum ones in collisions of HF(v=5) + H. We

have shown elsewhere (17) that as the temperature increases, the

relative importance of single quantum reactive deactivating processes

increases. On the highest barrier surface studied (40 kcal/mole) the

deactivation of vibrationally excited HF can be thuight of, to a good

approximation, as occurring entirely in single-quantum non-reactive
processes.

On this class of surfaces, vibrational energy is not spectacularly

effective at promoting reaction. This is seen in two ways: the fairly

small decrease (0. 10 to 0. 22 eV) in translational thresholds for
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reaction on the moderate and high barrier surfaces to the vibrational

quantum (0.49 eV), and the calculation of large activation energies for

reactive single-quantum deactivation processes at high temperatures

(700 - 1000 K). Elsewhere, we have shown that this partial effective-

ness of vibrational energy can be explained on the 40 kcal/mole surface

by a vibrationally adiabatic model (17). The feature of the potential

energy surface which is greatly responsible for this partial effective-

ness is the relative narrowness of the reaction channel in the saddle

point region (see figure 2). This narrowness produces a large vibra-

tional frequency for symmetric stretch motion at the saddle point,

meaning that the vibrationally adiabatic barriers will be fairly large,

even when there are a few quanta of vibrational excitation.

For the surfaces with low or only moderate barriers, a vibra-

tionally adiabatic model provides useful insight into the dynamics of

the reaction. In figure 20 we plot a vibrationally adiabatic correla-

tion diagram for the DFH reaction on the 1. 5 kcal/mole surface. In

this figure, the energy V (s) of the vibrational state n everywhere
n

along the reaction coordinate s is plotted. We also plot the energy

VmeP(s) along the minimum energy path. In this case, one can see

that there are wells in the vibrationally adiabatic correlation diagram

for all reagent states, and the wells become deeper as the vibrational

state increases. Since it is known that wells in the vibrationally

adiabatic correlation diagram can lead to reactive scattering reso-

nances (21), the existence of resonances in this system is not unex-

pected. Indeed, in figure 15 we see a very strong resonance in the
R

reaction probability P 00 at E 0 = 0.3 eV. We indicate this energy on 0

figure 20 with a dotted line. The correlation between resonances and

bound states of the wells in the vibrationally adiabatic correlation

diagram is obvious. For higher vibrational states the wells are

quite deep and wide, suggesting that large numbers of bound states
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*of the curves might exist, producing numerous resonances and hence

quite complicated dynamics. We also note that the curves for the dif-

ferent states come quite close to each other, suggesting that crossing

from one to another should occur fairly easily, especially between

states with n greater than 1. "V

If this picture is correct, it must explain both the decrease in

resonance intensity as the barrier height is increased and the greater

strength and higher energy of the resonance in the 10 kcal/mole bar-

rier surface for H + FHi than for D + FH. In figure 21 we present the

*vibrationally adiabatic correlation diagram for the DFH system on the

10 kcal/mole barrier su face. The main differences between this fig-

ure and figure 20 are the absence of the small well in the n=0 curve 0

and the much smaller depth of the well in the n=1 curve. Because of

this small well depth, the resonance is expected to be substantially

broadened. The vibrationally adiabatic correlation diagram for the 9
HFH system on the 10 kcal/mole barrier surface is shown in figure

22. As in figure 20, the energy of the resonance is indicated by a

dotted line. We note two major differences between figures 21 and 22.

First, in the HFH system, the well in the v-I curve is fairly deep

("-0. 1 eV); the resonance energy is seen to lie about halfway between

the bottom and top of the well. Second, the vibrationally adiabatic

correlation diagram curves for HFH are symmetric about s = 0.

Thus, the formation of a flat shoulder-like area on the curves, such

as that seen for n = I in figure 21, cannot occur in the HFH case; any

well must be symmetric about the saddle point. The greater depth

of the well in the HFH case than for the DFH one is responsible for

the greater strength and smaller width of the resonance in the former

system. Because the vibrational frequencies near the saddle point

are greater for HFH than they are for DFI-, the curves in the vibra-

tionally adiabatic correlation diagram for HFI will be at higher ener-

:1
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gy in the saddle point region than are those for DFH. Thus, the

*1 vibrationally adiabatic correlation diagrams produce the correct 6

dependence of the resonance strength and energy on isotopic substi-

tution.

* 0

6* .-.

4.
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VI. CON CLUSIONS

On the basis of the scattering calculations performed, we are able

to answer the questions posed at the beginning of section 4 about the

dynamics of the collinear HFH and DFH systems and how those dy-

namics depend on the barrier height of the potential energy surface

used. We briefly summarize what we have learned in regard to

each question.

1) The relative rates of collisional deactivation of vibrationally

excited HF decrease substantially with increasing barrier height for

small barrier height surfaces; on larger barrier surfaces they are

relatively independent of the barrier height. The barrier height at

which this transition occurs increases with temperature.

2) On low barrier surfaces vibrational deactivation occurs

primarily by reactive multi-quantum processes, while on high bar-

rier surfaces it occurs primarily by non-reactive single-quantum

processes.

3) Vibrational deactivation rates increase with temperature.

On the high barrier surfaces the rate of reactive deactivation in-

creases with temperature much more rapidly than that of non-reac-

tive deactivation. As the temperature increases, multi-quantum

deactivations increase in importance.

4) As the barrier height of the surface increases, both the

translational energy threshold for reaction increases and the average

fraction of energy going into product vibration decreases. On the high

barrier surfaces reagent vibrational excitation leads to a higher frac-

tion of energy going into product vibration; on the low-barrier sur-

faces this is not always true. .

5) The gross features of the non-reactive dynamics are not

affected by isotopic substitution; the reactive dynamics differ 4nb-

stantialy in their resonance behavior. This difference may be under-
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stood in terms of the vibrationally adiabatic correlation diagram for

the HFH and DFH systems.

6) Quantum mechanical resonances are strongest on the low

barrier surfaces and significantly weaker or absent on the higher

barrier ones. They move to higher energy as the barrier height of

the surface increases. Consideration of the vibrationally adiabatic

correlation diagram helps one understand this dependence.

L

.10

-J
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Table 1. Parameters for Minimum Energy Path (Eq. 7)

Surface Barrier A B C
-i

kcal/mole kcal/mole kcal/mole radians

1.5 0. 01681 1. 4832 1.3434

5 0.01681 4.9832 20.955

10 0. 01681 9.9832 25. Z68

*20 0.01681 19.983 29.575

30 0.01681 29.983 32.093

40 0. 01681 39.983 33.879

4 Ilp
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Table 2. <f> for Different Energies. Reagent Vibrational States,

and Potential Energy Surfaces

E/eV
a b .

Surfacea v 1.186 1.594 2.002 2.410 2.655

T.5 0 0.555 0.652 0.716 0.692 0.705

1 0.259 0.532 0.583 0.549 0.530

2 -c 0.637 0.461 0.511 0.552

3 - - 0.501 0.460 0.554

4 - - 0.394 0.480

5 . ... 0.585

5 0 0.494 0.543 0.627 0.647 NAd

1 0.350 0.378 0.504 0.513 NA

2 - 0.415 0.457 0.488 NA

3 - - 0.447 0.475 NA

4 - - - 0.604 NA

10 0 0.357 0.473 0.508 0.620 0.648

1 0.508 0.433 0.377 0.507 0.528

2 - 0.399 0.381 0.477 0.492

3 - 0.465 0.455 0.485

4 - 0.521

5 - - 0.621

20 0 0.159 0.222 0.330 0.412 0.456

I - 0.348 0.344 0.422 0.448

2 - - 0.335 0.401 0.444

3 - - 0.434 0.427

4 - - 0.522

30 0 0.116 0.149 0.233 NA

1 0.267 0.300 NA

2 - 0.379 NA

40 0 0.107 0.112 0.143

I - 0.230 0.240

2 0.332

a) Number indicated is the barrier height of the potential energy

surface in kcal/mole

b) Reagent Vibrational State

c) There is insufficient (below u 60%) reaction for this combination

of potential energy surface, reagent vibrational state and total energy

d) calculations performed on this potential energy surface for this

energy gave scattering matrices which were not unitary to within

3% so we did not use the results (NA = not available)
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FIGURE CAPTIONS

Figure 1. Schematic diagram of coordinate system for rotating

Morse-cubic spline potential energy surface.

Figure 2. Potential energy surface for the collinear H + FH system

on the 40 kcal/mole barrier surface in the mass-scaled Delves

coordinate system. Equipotentials are drawn every 0.3 eV from 0.3

eV with respect to the bottom of the HF well up to a maximum of 3.0

eV. The minimum energy path is indicated by a dashed line; the sad-

dle point is marked by an "X".

Figure 3. Energy level diagram of the energy V of the various

HF(right) and DF (left) states and the barrier heights of the surfaces

(center).

Figure 4. Plot of the total rate constant (sum of reactive and non-
de

reactive) k for deactivation in the collision H + FH(v) --# H +vFH(v' < v) at 300 K for v = I-5 as a function of the barrier height

Ebarr of the potential energy surface. Arrows mark the internal

energies of the four lowest HF states. Line types are as follows:

v-1 : solid line; v-2 : dashed line; v=3 : dashed-dotted line; v:4

dotted line; v=5 : dashed-triple-dotted line.

de
Figure 5. Plot of the total rate constant for deactivation k in the

v
collision H + FH(v) --+ H + FH(v'( v) at 650 K for v = i-5 as a func-

tion of the barrier height E of the potential energy surface.
barr

Arrows and line types are as in figure 4.

de
Figure 6. Plot of the total rate constant for deactivation k e in theV
collision D + FH(v) -. $ D + FH(v' <( v), DF(v"< v) + H at 300 K for

v = 1-3 as a function of the barrier height Eb of the potential

energy surface. Arrows and line types are as in figure 4.

*N
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Figure 7. Plot of the fraction f of deactivation occurring by
v

single quantum transitions in the collision H + FH(v) -4 H + FH(v-i)

(both reactive and non-reactive) at 300 K for v = 2-5 as a function of

the barrier height Ebarr of the potential energy surface. Arrows and

line types are as in figure 4. 40

R
Figure 8. Plot of the fraction f of deactivation occurring by reac-

V
tion in the collision H + FH(v) -+ HF(v'< v) + H at 300 K for v = 1-5

as a function of the barrier height Eb of the potential energy sur-

face. Arrows and line types are as in figure 4.

Figure 9. Plot of the average number <An ) of vibrational quantav de

lost in deactivating collisions in H + FH(v) --+ H + FH(v' -( v) (both

reactive and nonpreactive) at 300 K (solid line) and 1000 K (dashed

line) for v = 2-5. Arrows are used as in figure 4. Symbols used

are as follows: v = 2 : circles; v = 3 : squares; v = 4 : triangles;

v = 5 : diamonds. Where no line is shown, Anv>de may be taken as

being one.

Figure 10. Plot of Arrhenius activation energies E v, V-1 for the
a

single-quantum deactivation reactions H + FH(v) - HF(v-i) + H

for v = 1-5 as a function of the internal energy E of the HF(v)
int

reagent state on the six potential energy surfaces studied. The

barrier height Ebarr of these surfaces is indicated on the right side 4 -

of the plot. Internal energies of the v = 2-5 states are indicated by

arrows.

R
Figure 11. Plot of probability P of the reaction D + F.H():* D+FH(0) o h ecinD+FH0

-4 DF + H as a function of the reagent translational energy E in the0

threshold region on the six potential energy surfaces studied, the

barrier heights of which are indicated. The arrows indicate the

energies corresponding to the heights of the barriers.
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Figure 12. Plot of probability P D+FH(i) of the reaction D + FH(i)

-4DF + H as a function of the reagent translational energy E in the

threshold region on the six potential energy surfaces studied.

All labeling is as in figure Ii. The arrows on the abscissa indicate

the energies of the surface barrier heights.

Figure 13. Plot of the average fraction of available energy (f 0 >

going into product vibration in the reaction D + FH(O) -- DF + H

*as a function of the reagent translational energy E 0on the 1. 5

* (triangles), 20 (squares) and 40 (circles) kcal/mole barrier surfaces.

Energies of the various DF product states are indicated on the abscissa.

Figure 14. Histogram plot showing product state distributions for the

E.]

reaction D + FHMv -. *o DF(v') + H at a total energy of 2.410 eV for

v' up to and including 6 on the 6 potential energy surfaces, the barrier

height of which is indicated in the upper right corner of each strip.

The height of the bar is proportional to the magnitude of the state-to-

state reaction probability PDF~)-~D~'+ a) v-0; b) v--1; c)

v-2.

Figure 15. Plot of the state-to-state reaction probability

PDF()-.D~'+ for the reaction D + FH(v0-) -p DF(v') + H

D+FH-1i) _, Fv'+

as a function of the reagent translational energy E on the 1.5 kcal/
0

mole barrier surface. The arrow marks the energy at which the DF

(v) state becomes accessible. A solid line is used for the v'da

transition; a dashed one is used for the vi transition.

Figure 16. Plot of the state-to-state reaction probability
goF(g it pdvirtH defined for fig. t5 as a function of the rea-

gent translational energy E on the 5 kcal/mole barrier surface.
0

Arrow. mark the energies at which the indicated states become acces-

sible. Line types are as in figure 15.

4
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Figure 17. Plot of the state-to-state reaction probability

PD+FH(0) - DF(vt )+H defined for figure 15 as a function of the

reagent translational energy E0 on the 10 kcal/mole barrier surface.

Arrows and line types are as in figure 16.

Figure 18. Plot of the state-to-state reaction probability 0

PD+FH(0) -- DF(v')+H defined for figure 15 as a function of the

reagent translational energy E on the 20 kcal/mole barrier surface.
0

Arrows and line types are as in figure 16.

Figure 19. Plot of the state-to-state reaction probability

P H+FH(O) --4 HF(v') + H for the reaction H + FH(v=0) -- HF(v')+ H

as a function of the reagent translational energy E0 on the 10 kcal/ 61

mole barrier surface. Arrows and line types are as in figure 16.

Figure 20. Vibrationally adiabatic correlation diagram showing the
th

energy V along the minimum energy path (MEP) and of the n local

vibrational state as a function of the reaction coordinate s measured

along the minimum energy path for the 1. 5 kcal/mole barrier surface

for the D + FH reaction. The dotted line marks the energy at which

the resonance seen in figure 15 is observed.

Figure 21. Vibrationally adiabatic correlation diagram for the 10

kcal/mole barrier surface for the D + FH reaction.

Figure 22. Vibrationaly adiabatic correlation diagram for the 10

kcal/mole barrier surface for the H + FH reaction.

0
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CHARACTERIZATION OF LOW ENERGY RESONANCES

IN THE COLLINEAR H + H AND F + H SYSTEMS
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INTRODUCTION

9 Dynamical resonances have been found to be one of the most -

interesting results of collinear quantum mechanical calculations on

the dynamics of atom-diatomic molecule reactions. Knowledge of

the features of the potential energy surfaces responsible for their exis-

tence is important if one is to be able to understand their dependence

on the potential energy surface, reagent vibrational excitation, and

isotopic substitution. Similarly, it is important that one be able to

9 adequately recognize and characterize dynamical resonances, 0

especially when they are partially masked by direct processes a tr-

ring in tke same energy region.

In this section we consider various characterization techniqv

for the recognition and characterization of dynamical resonances for

two different systems: the collinear H + H and the collinear F + H
2 2

(FID, DH, D ) ones. Characterization techniques include studies of

9 the variation with energy of the state-to-state reaction probabilities,

scattering matrix element phases and their energy derivatives,

eigenphase shifts, and diagonal elements, eigenvalues, and eigen-

I •vectors of the collision lifetime matrix of Smith.

Paper II. i presents results of a collision lifetime matrix analysis

of the low energy resonances in the collinear F + H (HD, DH, D2 ) sys-

tems. The strength of the resonances is shown to decrease in the

order F-D >) FH2 > FD 2) FDH. Because the collision lifetime mat-

rix localizes the resonance into a single eigenchannel, it allows one

to determine the resonance position, width, and lifetime with a mini-

mum of ambiguity. The peak in the reaction probability vs. energy

curve for each system is shown to occur at higher energy than the

peak in the eigenvalue of the collision lifetime matrix vs. energy

curve for the same system, with the energy difference increasing

as the resonance weakens.

Paper II. 2 consists of a detailed study of the two lowest energy
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resonances in the collinear H + H2 system on the Porter-Karplus

potential energy surface. All of the characterization techniques men-

tioned above are utilized. The resonances are found to be reflected

in all of these methods, most notable the eigenvalues of the collision

lifetime matrix. Again, the resonances are almost entirely localized

in a single eigenchannel of this matrix. The effect of the symmetry

of the system in the results of the characterization procedures is

discussed. There appear to be substantial differences between the

two resonances as seen by the eigenvectors of the collision lifetime

matrix near the resonance energies.

Paper II. 3 includes a detailed study of the resonances studied in

paper I. i. As in paper 11. 2, all of the above mentioned characteriza- ;,

tion techniques are utilized. The degree to which the resonances are

reflected by the different techniques in each of the systems is dis- 2
cussed.
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1. Imiroduede.

Only about five years ago the first accurate calculations of the differential
and integral cross sections of a simple chemical reaction on a given potential
energy surface were performed. This was the result of an evolutionary process
that started shortly after the discovery of wave mechanics and accelerated
about 20 years ago with the development of electronic digital computers. The
purpose of this article is to outline some of the conceptual ideas and numerical
methodology presently used in such calculations. tn Section H we consider
collinear triatomic systems; for reasons of conceptual as well as computa-
tional simplicity, most of the early work done in this field was for such
systems, which served the useful purpose of testing some of the basic ap-
proaches initialy used. Since the results of calculations on such model
systems are approximate, in the sense that the three atoms are artificially
confined to move in a straight line, they are not thoroughly reviewed, but
some examples are given, ma inly for illustrative purposes. These include both
electronically adibatic as well as electroically nonadiabatic processes.
Some remarks on dissociation and three-body recombination procsse ate
also made. In Section III the concepts involved for electronically adiabatic
triatoms are extended to the three-dimensional world, and the results of their
application to the hydrogen atom-hydrogen molecule exchange reaction on
an assumed potential energy surface are given. Although this surface a
approximate, the dynamical calculations performed on them are aecurate.
tn Section IV an extension of reactive scattering concepts to more general
systems is considered, and a review of conclusions is given in Section V.

- - U. Tbs Qunos Dyinamics of Reactive Celkea Trimmede Reectem

Triatomic exchange reactions of the type A + BC - AB + C with A. B,
and C representing atoms confined to move on a laboratory-fixed straight line,
constitute the simplest reactive systems that display a basic characteristic
of many chemical reactions: the dissolution of a chemical bond and the
formation of a new o ed. The low mathematical dimensionality of the theory
permits a presentation unencumbered by the mathematial complexities of
molecular rotations. allowing thereby a fairly direct analysis of the effects
of translational and vibrational degrees of freedom. Initially we will consider
the case of electronically adiabatic exchange reactions and later these con-
sidetions wil be extended to electronically nonadiabatic ones. Finally, an
outline of how the theory can be extended to include collision-induced dis-
sociation and three-body recombination processes will be presented.

We consider initially collinear retions for which the first electronically

triaoms re xtened o th nl woldand he ~mit ofthei .
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excited Born-Oppenheimer potential energy function is everywhere suf-
ficiently larger than the total energy E of the reacting system for its presence
and that of higher electronic states to be ignored. The reaction will there-
fore be assumed to occur exclusively on the ground electronic state po-
tential energy surface. Furthermore. E will be assumed to be sufficiently
lower than the bond dissociation energy of the AB and BC molecules for the
dissociative processes A + BC -- A + B + C and C + BA - C + B + A
and the reverse recombinations to be ignored. These restrictions are con-
venient for simplifying the mathematical treatment. In Section ILH we
consider electronically nonadiabatic reactions, and in Section IV we suc-
cinctly discuss dissociation and recombination reactions.

A- REcnvu-Sc~rrutiG FoRmAL=S

Let r', be the BC internuclear distance and R, the distance between A and
the center of mass Gsc of BC. These coordinates are convenient for the des-
cription ofthe A + BC reagents. Similarly, let r. be the AB internuclear distance
and R' the distance of C to the center of mass G, of A, coordinates which are
useful for the description of the final state of the products. These two sets of
coordinates are depicted in Fig. 1. Equipotential curves for a representative
potential energy function (surface) V are depicted in Fig. 2 in terms of the x .
coordinates. This function is obtained by solving the electronic motion
problem in three dimensions, for all (R', rj) collinear ABC configurations.
Its central characteristic is that it displays a line of steepest ascents and
descents. the minimum energy path depicted by the dashed line in Fig. 2.
Along lines orthogonal to that path, the potential function increases in both
directions, portraying a behavior similar to that ofa diatomic molecule. This
is true everywhere along the minimum energy path, including the saddle
point, denoted in that Fig. 2 by a cross. It is this basic property that suggests
methods for solving the dynamic problem. Physically, the reaction consists
of (quantum mechanical) motion of the system from the reagent region of
the R', r'. configuration space. denoted by A + BC in Fig. 2, to the product
region, denoted byAB + C. The energy of the system is assumed to be signi-
ficantly below the dissociative plateau region, denoted by A + B + C, so

A G SGy C

I -IR' I

i I
Fig. l. Coordinate (or coilinaru tiatoma system.

,-S
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AlB*C

~A*C
IrA*

Wei

X - Potential energ surface V for a collnear triomc system ABC in the distance
coordinates of i i. The solid curves am tines ofconstant V. The dashed tine is the mnmum
mer patI. The angle k? is gim by Eq. (I.

that the region of configuration space sampled by the scattering wave func-
tion is limited to the relatively narrow, curved gully, identified by the hatch-
ing in Fig. 2, and located between the repulsive walls of the surface cor-
responding to smal values of r and/or r; (for compressed configurations)
and large values of these variables (for stretched configurations). The line in
Fig. 2 that passes through the origin and makes an angle i" with the R axis
is the one for which P4 - 0, i.e., for which A coincides with B. The potential
along that line, as well as along the R, axis, for which r, -- 0 and C coincides
with B, is quite large and can be taken to be infinite for the present purposes.
This leads to the nonpenetrability of B by either A or C, and the relative
ordering of the three atoms along the fixed straight line to which they are
coined is maintained throughout their motion. The angle d', in the range
x/4 to x2. is given by,

0' - tan-[ + m/ncj (I)

and is introduced for comparison purposes with the dynamically important
angle 0 to be considered in Fig. 3 and Eq. (1I)

If we neglect spin interactions, which are very small compared with the
other energies being considered, the nuclear motion Hamiltonian, after
removal of the motion of the center of mass of the system, can be written in
terms of either 2 or 7 coordinates as

h 2 0 a 2a2O

" gm + (2)

where
.- mA(mS + Ma and puc__%. -_ (3)

M,, + ms + mc ms+mc

I-S
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A*eC

FIg. 3. Potential energy surface for a cominear triatomc system ABC in the scaled co-
ordinates (R.. rj and (R,. r,) of Eq. (10). The cirular polar coordinates (p. a) are considered in
Section IUl. The angles us and 0 am gven by Eqs. (14) and (15). respectivey. Both sets of ames
(R. r.) and (R,. r) am in the same plane.

rpresent, respectively, the reduced masses of the A + BC and BC systems,
similar definitions being valid for pcm and /Ua with the roles of atoms A
and C interchanged. The symbols m5 represent the masses of atoms X
( & AC). The fist two terms in each of the two pressionsfor H given by
Eq. (2) represent, respectively, the kinetic energy of the relative motion of
the atom with respect to the center of mass of the diatom, and of the internal
diatom vibration. The problem being considered is that of obtaining solutions
of the nuclear motion Schr6dinger equation

H#, E(4)
subject to the asymptotic conditions appropriate for reactive scattering.
These are, for A + BC collisions,I p --ik;.,R;).r;) + f fOw exk ,R)0(r;)

U. (5) -
fR - '*w f xp(ik., R'),,(r;)()

a,7

The R; co behavior is that of a BC molecule (designated u), initially in
vibrational eigenstate 0, having vibrational quantum number n., and
approaching an atom A with relative motion wave number k', plus a
superposition of waves representing BC molecules receding from A with
relative wave numbers k;,. and internal quantum states n.. The R, -. o
behavior represents reactive product AB molecules in internal states- 0,
receding from atom C with relative wave numbers k;.,. Conservation of
energy requires that

+ , - + £,., +7. (6)
2#,%.Bc 2 1t&.gc 2Pc.zA
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where the EA., (A a, y) are the vibrational energies associated with state
#A.E(r) and are all referred to a common origin of measuremenrof energy. It
should be noted that although the EA.. are quantized, the k'1. are not, and
neither is E. Furthermore, in contrast with bound-state problems, the value
of E is assumed known, since we can prepare reagents in known internal
states moving with respect to one another with known relative kinetic energy.
For values of EA, > , Eq. (6) furnishes k,, < 0. The corresponding terms
in Eq. (5) are said to be associated with closed channels, and are needed for
the mathematical completeness of the expansions on the right-hand side.
The values of k ., for such channels are pure positive imaginary, and the
corresponding exponentials are real negative, decaying with increasing R-
or R;. The complex coefficient f (A - .7) is called the scattering ampli-
tude from initial state an to final state AnA. If the latter is open, the flux
associated with the corresponding term is vp.jfgA. (where vowA is the
relative motion velocity in that channel), whereas the flux associated with
the initial collision term is vw,. The collision cross section, for this one-
physical.dimensional (I-PD) world (which, however, is a two-mathematical-
dimensional (2-MD) world), for the amn - AnA processes, is dimensionless
and is a probability [see Eq. (36)] given by the ratio of those fluxes: W

P - (vJ.,) )fA .I2  (7)

A more convenient notation can be introduced by considering that the
bound vibrational wave functions hM,(,) differ significantly from zero only
over a relatively small range of rj of atomic dimensions. Furthermore.

*considering also C + BA collisions. Eq. (5) can be rewritten as

+ f A., exP(6k,,.et')],.,(r) (8)

In this expression, An . denotes the initial state of the reagents (which are
A + BC for ' - a and C + BA for ' -i', where B is always the central
atom), the - sign indicates that we are considering asymptotically the
regions of configuration space in which either R , - with r finite or
R' - c with r' finite, and 6,7. is the Kronecker symbol. which is unity if
X = A and n. - n and vanishes otherwise. The probability o'the A'nj. Ant
process (with A'nj. and A.n corresponding to open channels) is then/,,,.? .. . .,,,1.

4 (V.jVA'/ .) fA, IA (9)

B. SCALED COORDINATE

A very convenient conceptual and computational simplification can be
achieved if we introduce a coordinate scaling that results in the four reduced
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masses in Eq. (2) being replaced by a single reduced mass. This cad be ac.
complished by the scaling transformations

(10)R, ,, aR; r, -(a,)-'r a, -(PA.BA ),
u 

"
R,- a,R; r, - (a,)-'4' a, - (p .aJ//J 1" (10)

introduced by Delves (1959, 1960). In terms of the scaled coordinates R., r,.
and R,, r,, the nuclear motion Hamiltonian becomes

H - - -. + + Vk(R., r.)

. +V,(R,, r,) (11)

The single reduced mass A is independent of whether we use a or 7 scaled
coordinates and is given by the expression

S- [(mAm0mc)/M], M - mA + MIS + RC (12)

where the masses of the three atoms play equivalent roles. Furthermore, the
0 (R., r,) - (r,, R,) transformation is a 2-MD coordinate-axis rotation in the

scaled configuration space:

(13)kR,) " in W Cos (0)r, (1k r. .I

The clockwise rotation angle w lies in the 0--/2 range and is given by

co - tan [(mAmc)/(m]M)] 1  (14)

In this scaled configuration space the (R., r.) and (r, R,) systems of axes
are both orthogonal and can be depicted simultaneously, as indicated in j
Fig. 3. Under this rotation, the r. axis transforms into the R, axis, and the R.
into the r, This interchange of the R and r is a peculiarity of the collinear
world. The important fact is that, under the a - 7 transformation in the
scaled configuration space, the equipotential surface does not change shape;
this is not the case for the unscaled (R'. rj) configuration space.

As a consequence of these properties, the nuclear motion of the ABC
triatomic system on a laboratory-fixed straight line is completely isomorphic
with that of a single particle of mass/p moving in the 2-MD scaled configura-
tion space and subject to the potential V. In particular, the skew angle 0 be-
tween the R, and R, axes now has dynamic significance and is given by

a - tan '(muM)/(mm)]" (15) .

* :1

*!
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An analogous isomorphism property, as will be seen in Section III,A, is
valid for general reacting triatomic or even polyatomic systems.in the three-
dimensional (3-PD) world. This is a very useful conceptual simplification,
since it permits the extension of the ideas developed for single-particle quan-
tuns mechanics to multiparticle systems.

C. DIE Daous WAVELWG11 AND QuANTUm N w

The WKB criterion for the absence of significant quantum effects in a
single-particle system states, in simple approximate language, that such a
condition prevails if over one local de Broglie wavelength the relative change
in the local wave number i everywhere small compared to unity. The
isomorphism just established indicates that for collinear triatomic systems
the appropriate mass to be used for establishing whether this criterion is or
is not satisfied is the effective mas n. Let us consider several triatomic systems
at the same local kinetic energy T but with different mass combinations. Let
L stand for a light atom of mass m and H for a heavy atom of mass M. In
Table I we display approximations to the local de Broglie wavelengths A in
units of that for the LLL combination given by 3"1 h/(2Tm)". We see from W
this table that replacing one of three light atoms in the LLL combination by a
heavy one only decreases the local de Broglie wavelength by about 20 percent.
a rather small effect. For the LHH mass combination, if we set m - I amu (for
hydrogen) and M - 127 amu (for iodine), the relative de Brogle wavelength
decreases by a factor of about 3.7 compared to the LLL one. However, if the
remaining light atom is the central one, the skew angle given by Eq. (15)
decreases from 60* to about 7, with a resulting strong compression of scaled
distances in the saddle-point region and, therefore, a substantial increase in
the gradient of the potential in that region. As a result, large quantum effects
could still exist in such a system, in spite of the presence of two very heavy
atoms. In the case of electronically nonadiabatic reactions, considered in
Section flH, the potential energy function tends to change very rapidly with
configuration in the vicinity of avoided potential-energy surface crossings, a

Taws I

Enerm in D uxz WAvn.umTw

Maw combination Approximate relative de Broglie wavelenph

LLL 1.0
LLH 0.5
LHH 0.9 (MDIM)"
HHH 1.0 (MI)WII

,NO
[

['.9
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situation which also favors quantum effects. In particular, such effects were
shown to exist in a simplified triatomic collinear model for the chemilwnanes-

*cent Ba + ON: - BaO(a 3 n) + N2 reaction (Bowman et al., 1976). There-
fore, great care should be exercised before concluding that quantum effects in
collinear triatomic systems having one or more heavy atoms are negligible.

D. TmE SCATTERING AND REACTANCE MATRICES

Before attempting to solve Eq. (4). subject to the boundary conditions of
Eq. (8) it is convenient to define the scattering matrix S and the reactance
matrix R. This permits us to decouple the problem of obtaining arbitrary
solutions of the Schr6dinger. equation from the problem of imposing asymp-
totic conditions appropriate for collision processes on these solutions.

In the A arrangement channel region of the scaled configuration space
(RA - 3 as rj remains finite) we may expand the eigenfunction *-r4 k in
the basis set 01,('i' which is forced to be complete and discrete by setting
the diatomic potential vA(rA) = V(RA .- co, rA) in that channel equal to zero
at and beyond a value r- of 7 A, a region that the scattering wave fiinction, at
the energies considered, does not sample. We write

Sg(R*Zr (16)

where

A2  A)O- EA-a(*AmA (17)

and

0A(0) - OA.(r~) - 0 (18)

Replacement of Eq. (16) into Eq. (4) with H given by Eq. (11), multiplication
of both sides by 0:,11(rzA integration over iX and, in the end, replacement of 1
I by A leads to the set of asymptotic uncoupled differential equations

2 d2gA',2~ d f A4 .,(E -E A~ ezk (19)

whose solutions can be written asA
OAk v; '1 [J.(RA A,- C'AA(R A)BJ (2) k

where the A " and BAjok coeficents are integration constants, vAin, is the
channel velocity h IkA., 1/ju4 kA., is the channel wave number given by-

kA,- 1[214E - EA..~)] 12  (21)

*I

* 0I



*b

88 Aron Kwppermann

and JA, and A., are the incoming and outgoing waves given by

rexp(-Lik,.,R for open channels'
J .(R - ep(lk).,,ltA) for dosed channels

fexp(ik.,RA) for open channels (23)

( exp(-Ik.jRA) for cosed channels
The superscripts Xn . are allowed to scan the same range of values as the

subscripts An,. Eq. (20) can be put in the matrix form

g v"-(V A - B] (24)

where g, A, and B are the matrices whose An1 row and A'nj, column elements
are given, respectively, by.'. A', ., and B,:. and v. J and 6 are diagonal
matrices whose diagonal elements are vj,, .A,,,, and 4,V, respectvely.

We now define the scattering matrix S by the relation

8 - SA (25)
In other words, S is the matrix that upon left multiplying the matrix A of
incoming wave coefficients, generates the matrix B of outgoing wave co- 4
efficieznts. This means that if we know what the state and flux of the reagents
coming into a collision is, the scattering matrix permits us to obtain the
states and fluxes of the outgoing products. This matrix has a set of properties
that stems directly from the mathematical structure of the SchrOdinger
equation. We state here the more important ones. The important review
article by Lane and Thomas (1958) presents the proofs for the three-di-
mensional case.

(1) S is unique, Le., is independent of the choice of A. In other words, if
we arbitrarily pick two coefficient matrices AI and A2 that are nonsingular,
the Schr6dinger equation forces the corresponding B1 and B2 to satisfy the
relation 81A i B2 A 2 . S does, however, depend on the total energy E of
the system.

(2) S is symmetric. This basic property leads to the quantum mechanical
principle of microscopic reversibility or detailed balancing.

(3) The open part S of S, formed from its open channel rows and col-
umns, is unitary. This results in conservation of particle flux.

Equation (24) can also be put in the equivalent form

9 -" v -t [YC + V'ol (26)
where g and v have been previously defined, C and D are new integration
constant matrices, and YS and 4 are diagonal sine and cosin stationary wave
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matrices whose diagonal elements are given by

*sin(k,.,RA) for open channels
- (exp(IkA.,IRA) for closed channels (27)

Jcos(k,.A RA) for open channels (28)

- lexp(- IkA.,IRA) for closed channels (28)

The reactance matrix R (sometimes called the K matrix) is defined by the
relation

D = RC (29)

It can be shown (Lane and Thomas, 1958) to have the following properties:

(1) R is unique;
(2) R is real;
(3) the open part RO of R is symmetric.

From Eqs. (24)-(29), the following relation between R" and S* can easily be
obtained:

S- - (I + ,WXI - iR)-T (30)

Here I stands for the identity matrix spanned by the open row and column
indices AnA and A'nj..

The sine and cosine standing waves associated with R do not carry flux.
However. this matrix has the advantage of being reaL and calculable using
real quantities only. From it, the complex S0 matrix can be obtained using
Eq. (30) which is equivalent to

SIP - Re5'+ i mS'

Re SO = (I - R02XI + RO) - , Im So - 2R'(I + R'2)" (31)

It can also easily be shown that the scaled configuration-space scattering
amplitudef '" (defined by the unprimed version of Eq. (8)] is related to
S- by

f " - (Va.kIVA.. )"S (32) -

where the v., are the scaled channel velocities defined after Eq. (20). It is also
true that the probabilities P!, can also be expressed in terms of scaled
channel quantities by an expression analogous to Eq. (9):

,'"- (v,,,/ lfi' (33)

As a result of the last two equations we have, finally:

,- I?"A- 12 (34)

* -

.I



7t

90 Aron Kuppermarnn

Thus. once the open part of the scattering matrix is known, so are all the
reaction probabilities at the same total energy. From the symmetry of S we
have

/ ..- - PA.(35)

which is the principle of. microscopic reversibility for this collinear system,
and from the unitarity of W we have

(36)
AA

where the sum is extended over the open channels. Equation (36) constitutes
the property of flux conservation, and justifies the use ofthe term probability
for the quantities Pl:,.

E. COMPMtATMON MrrioowoY

From the considerations of the previous section. we conclude that to
determine the transition probabilities Pi', which include the reactive
(A .) as well as the nonreactive (A - A') ones, it suffices to obtain the p
reactance matrix R. This in term can be determined by calculating a suf-
ficiently large number of linearly independent solutions of the Schr6dinger
equation, and putting the associated g matrix in the form of Eq. (26). From
this, the square coeficent matrices C and D can be obtained, and R calculated
from Eq. (29) as long as care has been taken to ascertain that C is nonsingular.

Over the years. different approaches have been used to obtain such linearly
independent solutions of the Schr6dinger equation. Mortensen and Pitzer
(1962) Mortensen (1968) Diestler and McKoy (1968), Truhlar and Kupper-
mann (1970, 1972), and Truhlar er al. (1973) used finite different methods and
Cartesian coordinates. McCollough and Wyatt (1969, 1971) also used a
finite difference method, but they solved the time-dependent Schr6dinger
equation. In general, finite difference methods are computationally very
ineffiient and inappropriate for extension to problems of higher dimension-
ality. Another approach is to solve the integral equation equivalent to Eq. (4),
as developed by Sams and Khouri (1969) and applied to several systems by
Adams er aL (1974). A variational approach has been used by Mortensen-
and Gucwa (1969), and more recently, a finite element approach by Askar
er a. (1978). However, the most widely used approach for accurately solving
the collinear triatom Schr6dinger equation has been the coupled-channel
(i.e., close-coupling) method, in one of its several forms. The basic method
consists of choosing a set of two convenient variables, x and y, to describe the
configuration of the system. These variables may be different in different
regions of configuration space, but satisfy the central property that for x

ai
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equal to a constant .j, the potential energy function V(i, y) assumes very large
* values for small and for large y. The wave function 4f(x. y) is expanded in

eigenfunctions of a one-mathematical-dimen.- nal Hamniltonian in y con-
taining V(Z y) and the resulting coupled ordinary differential equations in
the x-dependent coefficients are solved. Variations of this approach have
been developed by Rankin and Light (1969), Miller and Light (1971),
Kuppermann (1970, 1972), Diestler (1971), Johnson (1972). and Light and

* Walker (1976). and applied to a variety of collinear systems (Wu and Levine,
1971; Shipsey, 1973; Schatz and Kuppermann. 1973; Schatz et al., 1973,
1975a.b: Baer and Kouri. 1974. Persky and Baer, 1974; Baer tt., 1974; Baer,
1974a.b; Connor et at.- 1978)

In the present article we will review, as an illustration. only one of these
methods (Kuppermann. 1970, 1972). In this method, the scaled configuration
space isdivided into three regions, denoted by LII, and III in Fig. , and called,
respectively, the reagent. the strong interaction, and the product regions. In
each of these regions different coordinates and different basis sets for ex-
panding the wave function are used. The value of R, for points P, and P2 is
sufficiently large for V(R.,r.) along the line P1 P2 to have assumed the asymp-
totic behavior vjr(rJ Similarly, V4.R,, r,) along P6 P7 equals v,,r,). The point
P0 is located sufficiently inside the dissociated plateau region for the wave
function to vanish along the line P IPOP, Similarly, P2 is chosen soas tohave
a sufficiently low value of r. and P6 of r. for the wave function ablong the fine
P2 P4 P6 to vanish. To integrate the Schr6dinger equation, we use the Cartes-
ian coordinates (R., r.1) and (R.,, r,) in regions I and III, respectively, and in
region 11 the circular polar coordinates (p, ~ with origin P0 . as indicated in

*R

P7

0 
P1  

-

P4  * Ps P2
Rq

* .0

ftg 4. Coordinates and reorts of scaled configuration space for inegrating the Schr6-
dig equation for collinear inagomac: reacionsi.

-0
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Fig. 4. The nuclear motion Hamiltonian in terms of (R., r,) and (R-. r.,) is
given by Eq. (I1), whereas in the (p, 0) coordinates it is

-,] + Vp, - (37)

We now subdivide region I into nI subregions separated by lines of constant
R. at R. - R., R.,.... R," where R0 - R.I and R. - R are respectively,
the R, coordinate of points P, and Po of Fig. 4. The range of the ith subregion
is R'-- < R, < R4,. For expanding the wave function in that subregion we
choose as basis functions the eigenfunctions 4 .; R') of the reference
potential V(r.; R.) - V(Rf, r.) where R? is a value of R. belonging to the
ith subregion, such as its midpoint. These basis functions satisfy the equations

1- + V%((r.; R")]..(r.; R,) - E.R.), (38)

*4r,,; .) - ,(r.; R,") 0

where r,, and r.2 are the P. coordinates of points P, and P2 , respectively.
The E,,.(R') are the energy levels of the local transverse vibration at

R. - iC, and the local basis set tb,,.; RI.) furnishes a better representation
of the scattering wave functions than do the diatom eigenfunctions 0,,(r,;
R, - ao). We now expand those wave functions according to

- g,'.'(R,; R?).,.,(r.; R*) (39)

Substituting this expression into Eq. (4) with H given by the first part of OW
Eq. (1 I), multiplying both sides by 0,0.(r.; R,) and integrating over r. from
r~i to r., leads to the following set of coupled equations, written in matrix
form:

h2 d2
6'2- d + V'(R.; R,)g' = E'(R?)g' (40)

All matrices appearing in this equation are square, with dimensions equal to
the number of terms N used in expansion (39). Although in principle this -'

expansion should be infinite, it is truncated at a finite N, which is greater than
the number of open channels at the energy being considered 1i.e., expansion
(39) includes closed channels], and convergence with respect to increasing
N is determined numerically. The elements of g' are the g^,*i, with n, and
n*. the row and column indices, respectively. E' is the diagonal matrix whose
diagonal elements are E - E,(R?) Finally, VI is the interaction potential
matrix whose n., n. element is given by

V.6."(R,; R) - (.(r,; R)I V.(R., r,) - V(R. rI, .(r,; Rf)> (41)
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The Schr6dinger equation is integrated in region I for N independent solu-
tions by choosing g'(R, 1; R') =dgl0 and dg(R.,1; Rj O)-dR, = go arbitrarily,
but not simultaneously zero. One such choice is to make the first equal to the
identity matrix and the second equal to the null matrix. This corresponds
to a choice of initial conditions at the starting value R,1 of R.. We then
integrate the coupled equations (40) through subregion 1, change to the basis
set for subregion 2 at the boundary between these subregions, and continue
in this manner until we reach the end of region I. The change in vibrational
basis sets at the boundary between subregions i and i + I is accomplished by
imposing the condition that the wave function e'05" and its derivative with
respect to R, be continuous at that boundary. This results in the relations

; S~gkR_; R), dgi(R';R ' ") dg (R. R) (42)
d4R d&,

where Sf is the overlap matrix between the basis functions for subregions i
and i + 1, its n,. n; element being given by

S t - <0.(r.; R'- *-) 1 .- )> (43)

If the expansion (39) were complete Si would be orthogonal. For the trun-
cated expansions required by practical considerations, it still must be nearly
orthogonal in order for the scattering matrix that results at the end to satisfy
flux conservation with acceptable accuracy.

Proceeding to region II. it is also subdivided into subregions by lines of
constant 0 at 0 - 40, 01, ..... " where 00 - 0 and 0'- =0-. are. re.

spectively, the 0 coordinate of points P3 and Ps. In analogy with region I,
the range of the ith subregion is 0' <- < '. We note that cuts of the
potential energy function V(p, 0) along lines of constant 0, when plotted as a
function of p, have the shape of diatomic molecule potential energy functions.
This is a crucial property, which not only serves as a fundamental basis for
reactive scattering calculations, but has also been historically used by
Eyring (1935) as a basic justification for transition state theory. We make use
of this characteristic behavior by choosing as basis functions for the ith
subregion the eigenfunctions On,(p; 0') of the reference potential VAp; 0")
- V(p, 0'), where 01 is a value of 0 in that subregion. These functions are
defined by the eigenvalue equation

- d' + d V "(p; 0)]Oui.(P; 0") Ea.(O")On. (44)

and the boundary conditions 0

O.--; 09) - .(P 0; 00) =0 (45)

l.9
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where p' is the value of p for the intersection point between the h - 4e line

and the line P3P, Ps. As in region I. On, and El. are local transverse vibra- '
tional eigenfunctions and eigenvalues that lead to a much more rapidly
converging expansion of the scattering wave function in subregion Ili than
would the eigenfunctions of the isolated diatom reagent or product.

We now expand that wave function according to

.". =- '  gtu(0; )4  '...(o ") (46)

Substituting this expression into Eq. (4) with H given by Eq. (37) and pro-
ceeding analogously to region 1, we obtain the following matrix differential
equation:

2 d2 ' + p(O)V(O; '-)g p2En (, 1 )gn (47)
2u- d

All the matrixes in this expression are N x N square matrices, with the same
dimensions as those in Eq. (40). The elements of g are the q&'. with n
and nj. the row and column indices, respectively; p2, V!, and En are dened by

P.' (0) - (Ou.(P; 06')IPDIC.(P; g*))

-0(,") - 0 O)IV:(. ) - V(P. 0) - j.i ( (48)

The condition that at the boundary between regions I and 1I, V"
'  and

its derivative with respect to R, are continuous, leads to the following relations
between the initial values of gn or its 6 derivative and the final values of g.
or its R, derivative:

gi(0 , 0. 46) - p"2g(R, R") (49)

dgn(¢ _ 0; 1'0 )]/do - -p3 '[dg(R, R:*)/dRJ -

where

p - (O.(P; ' ')lPbjODi.(r - p; R"I)>, b - , j (50)

The change in vibrational basis set at the boundary between subregions
Hi and Iii + 1 is accomplished by equations analogous to (42) and (43).
Using them and Eq. (49) we can integrate Eq. (47) from the beginning through
the end of region IL

For region III we use equations analogous to (38)-(43) with I and a
replaced by III and y. respectively, and other obvious notational changes.
At the boundary between regions II and IlL equations analogous to (49)
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are applicable. with a plus rather than a minus sign in the right-hand side of
the second of these equations to indicate that both 0 and R, increase in the

i

direction of integration.
With the help of this procedure, we can integrate the Schr6dinger equation -

from the beginning of region I to the end of region III. The numerical method
used for integrating the coupled second-order differentiai equations (40), (47),
and the region III equivalent of (40), is arbitrary. It should, however, be an
efficient method, because otherwise the computation time may be excessive,

* since it grows with the cube of the number N of coupled equations. Three such
methods commonly used are those of Gordon (1969), Magnus (Light.
1971. and Light and Walker (1976).
A numerical complication that should be mentioned is that due to the .1

necessary inclusion of closed channels in the expansion of '"', the columns

of the g matrices tend to become linearly dependent, as the integration
proceeds, thereby destroying the needed linear independence of the .
This can be avoided by reorthogonalization procedures, one of which in-
volves right multiplying g and g' by g t, which means continuing the inte-
gration with g.. - I and g. - g'g-. This corresponds to obtaining
solutions with the modified initial conditions g. =gl g - I and g". -

g go-. Each time a reorthogonalization procedure is performed anywhere
in regions L IL. or III. the initial conditions of region I must be modified
accordingly. The efficient integration method recently developed by Light
and Walker (1976) has elegantly bypassed this complication.

Let us label by gr" the final gin matrix at the end of region III and by go I
the corresponding (modified) initial g' matrix at the beginning of region L
and let us use an equivalent notation for the derivatives with respect to R,
and R., respectively. Similarly, let us perform integrations of the Schr6dingerequation starting at the beginning of region III (i.e., line P6P, of Fig. 4) and

terminating at the end of region I (line P1 P2). Let gin and gr be the cor-
responding initial and final matrices, with a similar notation for their de-
rivatives. With the help of these several matrices we can determine the R
matrix as follows.

We define the global g and g' matrices by

I Ii* I

I g 0 g ( g 91g=" \,, gio)" gm" gP" g~o"' (51) ..,..,

Since along lines P2 P, and PP 7 , the potential function V has assumed its
asymptotic behavior v(r.) and v,(r,), respectively, g must have assumed the
form given by Eq. (26): -

g =v "'z,'C + 'D] (52)

-1
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Similarly, its derivative must be given by

g' - V C + (O] (53)

where S" and V are the diagonal matrices whose diagonal elements are the
derivatives with respect to RA of Eq. (27) and (28), evaluated, as are Y' and
V, atR - R andR, - R,7.

In Eqs. (52) and (53), all matrices except C and 0 are now known. From
these equations we can therefore obtain these unknowns and from them R by
using Eq. (29). From the open part R" of R we obtain S" from either Eq. (30)
or Eq. (31), and finally the transition probabilities Pl. by using Eq. (34).
In this manner, once V is given, these probabilities can be calculated.

40

F. Tie HYDooGm ATOM-HYDOGmEN MOLEcuLE ExCitAI0 RAcTnoN

Because of the relative ease in calculating the potential energy function
for the H3 system and because of the quantum nature of this system, it has
been investigated extensively in the coilinear approximation. Accurate
quantum calculations have been performed by Truhlar and Kuppermann
(1970, 1972), Schatz and Kuppermann (1973), Diestler (1971), and Johnson
(1972), and compared with classical and semiclassical calculations by
Bowman and Kuppermann (1973a,b). We will summarize here some of the
more important results.

In this coilinear model, the three H atoms are assumed to be distinguish-
able, due to their fixed ordering on the straight line to which they are confined,

£ as indicated just before E4. (1). The scattering wave function is therefore not
forced to be antisymmetric with respect to the exchange of any two of the
three nuclei. In the three-dimensional calculations, to be described in
Section III it is necessary to impose the Pauli principle on the scattering wave
function, since we are then dealing with the real world. However, in the
fictitious collinear world, we are free to define a model in which the atoms are
distinguishable. An alternate model, not considered here, would be to impose
the Pauli principle on the nuclear motion in the coilinear world also, in
analogy to the 3-PD conditions. For facility of comparison with classical
calculations and conceptual simplicity, this was not done in the present
calculations.

1. Reaction Probabilities and Rate Constants

Let P1,9 represent the probability of the reactive process H + H2(n)
H 2(n') + H. In Fig. 5 we display the results of the exact quantum mechanical
(EQ) calculations of the reaction probabilities o for the scaled SSMK
potential energy surface (Shavitt et at. 1968), as a function of the total energy

,sa
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E and the initial relative translational energy Eo (Truhlar and Kuppermann,
1970, 1972; Bowman and Kuppermann, 1973ab). Also shown are the cor-
responding quasi-classical trajectory (QC) and uniform semiclassical (USC)
probabilities. The arrows on the lower abscissa designtte the energies at which
the excited vibrational states n - 1, 2 become energetically accessible.

The USC values are a better approximation to the EQ values than are the
QC results at total energies between 1.0 and 1.2 eV, but deviate rapidly from
the exact values as E decreases below 0.85 eV. The strong resonance oscil-
lation occurring around £ = 0.9 eV in the EQ curve is barely perceptible in
the USC curve. In addition, the very sharp resonance behavior in the EQ
curve at 1.27 eV is not reproduced by the USC calculations. Stine and
Marcus (1974) have been able to reproduce, by a semiclassical technique,
the EQ resonance at 0.9 eV. At energies at which no classical trajectories
exist, the USC theory used in these calculations (Miller, 1970ab; Bowman
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and Kuppermann. 1973ab), furnishes a zero reaction probability. This is the
case at total energies below that of the saddle point. for which the reaction
procedes entirely by tunneling.

Miller and George (1972) have used a complex trajectory semiclassical
method to overcome this difficulty. In Fig. 6 we display the ratio of their
probabilities. Ps€ (for n - 0, A' - 0). to the corresponding EQ ones, P .
as a function of translational energy Eo. for the Poner-Karplus (1964)
surface (Bowman and Kuppermann, 1973ab). It can be seen that over the
translational energy range of 0.02-0.2 eV, of importance for tunneling pro-
cesses the SC reaction probabilities range from 0.65 to 0.87 of the accurate
ones. This is a major improvement over the real trajectory USC method, but
it also indicates that this complex-trajectory SC method still significantly
underestimates the effect of tunneling. The steep rise in the PfJP(s ratio ' _
above EG - 0.2 eV may be indicative of the same kind of divergent behavior
as the one shown in Fig. 5 by the P~oo USC curve.

In Fig. 7 we display the EQ total reaction probabilities Pf from the initial
state n of the reagents to all accessible final states of the products, for the
scaled SSMK surface, for n - 0,1 , 2 (Truhlar and Kupperman, 1972). (The
dashed portions of these curves around the resonance at E - 1.28 eV are
inaccurate; the resonance structure is sharper than indicated and is correctly
given in Fig. 5.) The threshold for production of H2 molecules in their first
vibrationally excited state is £ - 0.79 eV. From that energy to 0.89 eV,
vibrationally excited reagents have a vibrational energy of 0.79 eV and
0.0-0.1 eV translational energy, whereas ground vibrational state reagents
have 0.27 eV vibrational energy and 0.52-0.62 eV translational energy.
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Filg. 7. Total reaction probabilities Pe ., ( 0. .2) as a function of total energy £ and initial
relauiv kinetic energy E. for pound state (n - 0). first excited state (n - I L and second excited
state (n - 2) reagents for the collinear H + H.(n) - H2 + H reaction.

Figure 7 shows that for this energy region, the probability of reaction is
greater for ground state reagents. This illustrates that it is not necessary
merely to have enough energy to react, but that the energy must be dynamic-
ally available to overcome the barrier. Apparently the dynamics of this system
require that more of the vibrational energy be tied up as motion transverse
to the curved reaction path when the reagent has a greater fraction of the
energy in this transverse mode. This indicates a tendency toward vibrational
adiabaticity in this mode. The effective translational energy reaction thres-
hold for ground state reagents is 0.25 eV, corresponding to a total energy of
0.52 eV. Since the barrier height is 0.42 eV, the translational energy for this
effective threshold, measured with respect to the top of the barrier, is 0.1 eV.
For n - I and 2 (for which E is already above the barrier height even for zero
translational energy), the effective translational threshold energies are 0.08 eV
and less than 0.03 eV, respectively. The difference between the translational
thresholds of 0.25 and 0.08 eV for n - 0 and n -I results in a translationally
thermal rate constant k,(T) that, at room temperature, is about 440 times
greater for n - 1 than for n - 0. In Fig. 8 we display Arrhenius plots of the
total rate constant k(T) calculated from the EQ reaction probabilities
(dashed curve, left ordinate), the k,(T) rate constant (dotted curve, right
ordinate), computed from the P, reaction probabilities, and the Arrhenius
straight-line fit to the high-temperature data (solid curve, left ordinate).
Over the entire temperature range considered, k(T) - ko(T) to within 3
percent because of the very small fractional thermal population of vibra- S

* tionally excited reagents at those temperatures. Comparison of the k(T)
a kc(T) and ki(T) Arrhenius plots indicates the effectiveness of vibrational
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energy in overcoming the barrier. The curvature of' the k(T) plot is related to .
tunneling effects and is discussed in the next section.

2. Twwfeing Effects

The dynamics of the reaction from n - 0 occurring in the threshold energy
relaon can be elucidated with the help of the probability current density and
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its streamlines. For a Hamiltonian of the form of Eq. (11) the probability
current density vector in the 2-MD configuration space is defined as ,

r,) - (54)

where

and fl, and tA are the unit vectors along the RA and PA Cartesian axes and *-
is the solution of the Schr6dinger equation satisfying the asymptotic scatter-
ing conditions of the type of Eq. (8) (with i and ,n . interchanged).

The streamlines of j a are curves in configuration space, which at every
point P(RA, rA) in that space are tangent to the j"A vector at that point. They
satisfy the cndition that the flux of J normal to a line L, connecting a point
P, on one streamline S, to a point P2 on another streamline S2 is inde-
pendent of where along those two streamlines P1 and P2 are chosen, and of
the shape of L12 . For this reason, we can say that each streamline carries
with it an element of flux. In particular, if P, is chosen to lie in the steep
repulsive region of configuration space and P2 in the plateau region [such
that *"A(P,) - OA" (Pz) - 0]. then the flux J ' through L, 2 is just the 0
product of the total reaction probability times the incident flux J1j. If we
write the incident wave as A "RA)O(rA i: is equal to

Jt caa.,, 8  .( , seult
JA'A I A I'vA, (55)

-"A f-i, J" - P (56)

wheredL is a vector element perpendicular toL,2 . In Figs. 9 and 10 we dis-
play, respectively, streamlines of probability current density and profiles of
the component of jo normal to various straight-line cuts along the streamline
field, for the H + H2(0) - H 2 + H reaction on the SSMK surface (Kupper-
mann et aL, 1974). In Fig. 9, the jo at every point is represented by a curved
arrow starting at that point and whose length is proportional to the magnitude 0
of jo. The solid lines are equipotentials of V, the values of which are given
in electron volts at the lower right part of the figure. The equipotentials
labeled E correspond to the energy 0.470 eV of the calculation. Therefore,
any classical trajectory at that energy would have to be confined to the region
of configuration space between those two equipotentials. It can be seen,
however, that the streamlines cut those classical margins, penetrating into
regions of configuration space that are classically inaccessible and carrying
with them tunneling flux. A quantitative definition of a tunneling coefficient
y can now be introduced as follows. Let us consider the short-dashed lines

A-
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path is also indicated by a dashed lane. The abscissa x, is the Delves coordinate R, multiplied by
(gaWIP,)liwhereas the ordinate x3 is r. divided by that factor.

of Fig, 10. These are limiting streamlines that are each tangent to one of the
two E - 0.470 eV equipotentials. Any other streamline in between these
never penetrates into clasically forbidden regions of configuration space,
whereas any streamline outside this band necessarily penetrates into such
forbidden regions. The total reactive flux carried by the latter streamlines will

*be defined as the tunneling flux J", and the ratio of it to the incident flux
J"4j will be called the tunneling coefficient y"A. The product of 7"A by the
total reaction probability is by definition the tunneling probability Pt.
Therefore.

y".% jAPAjAnj -. "AlpAaa (57)
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energy is 0.046 eV above the barrier height of 0.424 eV. This indicates that
cutting across the corner of the potential energy surface is a preferred reaction
pathway at these energies. In Figs. I11 and 12 we represent. respectively. the
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the emergles of the barier top and ofthe first vibrationally eited H3 sate.

tunneling coefficients 7 and the tunneling and nontunneling reaction prob-
abilities as a function of relative translational and total energy for the
H + H 2(0) -. H2 + H reaction on the scaled SSMK surface (Kuppermann
a aL, 1973 ; A. Kuppermann. J. T. Adams. and D. G. Truhlar, unpublished
results. 1973). In Fig. 11, 7, represents the tunneling coefficient associated
with the streamlines that penetrate into the classically forbidden region to
the left of the left-limiting streamline (the direction of the j vectors being used
to define left and right); 7.,,, that associated with the streamlines to the

0
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H, + H reacto. The arrows on the abscissa have the same meaning as in Fig. II.

right of the right-limiting streamline: and 7,m,, the sum y of YIS., and . '
In Fig. 12 we represent, as functions of energy, the EQ reaction probability
P10, the QC reaction probability P. , tht- total tunneling reaction probability
7P and the nontutmeling reaction probability (L - "/)Pt. We see that at an
initial relative translational energy of 030 eV (which is about 0.15 eV above
the top of the barrier, and corresponds to the average translational energy of
a collinear thermal distribution at about 3600 K), the tunneling coefficient

-O
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has the surprisingly high value of about 0.29. Since the total reaction prob-
ability at that energy is about 0.93, the tunneling contribution to ihe reaction
probability is approximately 0.27. This should manifest itself in the values of
Lhe rate constants.

Since the total reaction probability has been decomposed, by the stream-
line analysis. into tunneling and nontunneling contributions, the corre-
sponding collinear rate constants (Truhlar and Kuppermann, 1972) can also
be expressed as the sum of a tunneling and a nontunneling contribution. In
Fig. 13 we display Arrhenius plots of the total rate constant k and the tun-
neling rate constant k,,, (left ordinate scale), as well as a linear plot of the
ratio k,./k (right ordinate scale) as a function of reciprocal temperature. It

T(K)

1000 500 400 300 200

104 1.0

Z 01 k,/ 0.8

-

E

t0o -0.4

k,,, -0.2b'2 3 40 • .4,

1000 K/T
FIg 13. Arrhenius plots of the total rate constant k and the tunneling rate constant k,,I

(left-ordinate scale for both) for the H + H, - H, + H collinear reaction. The curve labeled
k,,/A represents their ratio (right-ordinate scate). J

*,

• .I
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can be seen that at room temperature about 55 percent of the rate constant is
due to tunneling processes, and even at 1000 K about 25 % of the rate constant
comes from tunneling contributions. Furthermore. between 1000 and 400 K
the Arrhenius plot of k(T) is a straight line, and nevertheless, over that tem-
perature range, the tunneling contribution to that rate constant lies between
25 and 43 % . At lower temperatures, when the effect of tunneling is even higher.
the Arrhenius plot of k(T) shows substantial curvature. We conclude that in
this system, curvature in the Arrhenius plot of the total rate constant is not a
necessary condition for substantial tunneling. The reason is that the Arrhenius
plot of the tunneling rate constant is also a straight line over a substantial
temperature range. Therefore, tunneling processes in both the collinear and
three-dimensional worlds may be substantially greater than would be in-
dicated by the criterion of Arrhenius plot curvature.

3. Dynamic Resonances

The EQ reaction probability versus energy curve of Fig. 5 displays two
pronounced oscillations, at relative translational energies of about 0.62 and
1.06 eV. These oscillations are due to the quantum mechanical interference
between direct reaction and dynamic resonance mechanisms, in which
energy is trapped in internal degrees of freedom of the system (Schatz and
Kuppermann, 1973). For the 1.06-eV resonance, the trapping degree of
freedom is mainly due to the mode of motion transverse to the minimum
energy path (Schatz and K uppermann. 1975; Schatz. 1976: G. C. Schatz and
A. Kuppermann. unpublished results, 1975). However, the one at 0.62 eV
seems to be due. at least in significant part, to the trapping of energy in a
longitudinal mode of motion, partly along the minimum energy path, with
the repulsive walls associated with the skew axis acting as partial reflectors
(Dwyer. 1978; Kuppermann and Dwyer. 1979: Kuppermann, 1981). This
corresponds to an asymmetric stretch virtual mode at the saddle point.
whereas the 1.06-eV resonance corresponds mainly to a symmetric stretch
virtual mode. as depicted in Fig. 14 by the two orthogonal lines passing
through the saddle point. This suggests that these resonances may cor- 4
respond to the virtual state vibrational spectroscopy of the saddle-point
region. and that the energies at which they occur may be related to the
potential surface parameters in the saddle-point region just a he position
of bound-state vibrational energy levels of stable molecules is related to the
potential surface parameters in the region of its minimum. If this possibility,
upon further investigation, turns out to be correct, an experimental deter-
mination of the energies of dynamic resonances may lead to information
about geometrical and energetic details of the saddle-point region of reactive
potential energy surfaces.
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energy surface, the shorter corresponding to the lowest energy resonance and the longer to the
second resonance. These resonanes are related to the oscillations in the EQ crve of Fiu. 5 at

Q62 and 1.06 eV, respectively.

G. TtE F + H2 -. H + H REAcTION AND ITS ISOTpic CouNTEPARTs

The reactions of F atoms with H2, D2, and DH molecules have been
extensvely studied by infrared chemiluminescence (Polanyi and Tardy,
19691. chemical lasers (Kompa and Pimentel, 19671 and crossed-molecular-
beam techniques (Schaefer et al, 1970; Sparks et al, 1980). These reactions
are important for the fluorine-hydrogen chemical lasers, where they serve as
the main pumping reaction (Kompa and Pimentel, 1967; Spencer et at, 1969).
They have also been studied theoretically by the collinear quantum me-
chanical (Schatz et aL, 1973, 1975ab; Connor et al. 1978; Latham et al, 1978),
quasi-classical (Schatz er al, 1973, 1975a.b), and semiclassical methods
(Schatz et al., 1973. 1975ab; Whitlock and Muckerman, 1975), and the three-
dimensional quasi-classical trajectory (Muckerman. 1971, 1972; Jaffe and
Anderson. 1971. 1972; Jaffe cia,93 Wilkins, 1972, 1973; Blais and Truhiar,
1973; Ding et al, 1973; Polanyi and Schreiber, 1977) and quantum-me-
chanical angular momentum decoupling methods (Redmon and Wyatt.
1979). The reaction is exothermic by about 32 kcal/mole. and as a result, four
vibrational states of PH are normally accessible for the F + H2 reagents at
thermal energies, and five vibrational states of PD for the F + D2 reagents
at corresponding energies.

The collinear LEPS potential energy surface for F + H2 proposed by
* Whitlock and Muckerman (1975) is depicted in Fig. 15 in scaled coordinates

(Schatz ei al, 1975a). The position of the saddle point. which is 1.06 kcal/mole
(0.046 eV) above the bottom of the entrance reagent valley, is located by the
cross in that figure The heavy solid line going through that point is the
minimum energy path, and the other curves are equipotentials at the energies

lt*,
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Fig. 1S. Equmpotentual contour plot o( the FH2 collinear potential energy surface in sae
coor'dinates (z' - R,; z -, r,, The energies of the eqwpotentas. as indicated, an easured
with reslpet to the minimum in the reagent H1 diatomic potential energy curve (associated with
the lower rilght pert of the filure), Th heavey line desotes the nimnum energy path, with the
saddle point indicated by a c-om.

given in the lower right portion of the figure. The coordinates x't and x2 are
R, and r,, respectively, in the notation at Section lI,A, where F, H, and H are
A. B. and C. respectively. It can be seen that the exothermicity starts being
released before the bend in the minimum energy path, and we may therefore
expect the products to be vibrationally excited, due to collision of the effective
mass point with the skewed repulsive wall, after that point has picked up a l
significant part of the energy release.

1. Reaction Probabilities and Rate Constants

In Figs. l6 and l7 we display the F + H2 EQ results for/ o,, Po3, and Po,
as well as those for the USC and quasi-classical forward (QCF) and re'iersc
(QCR) methods (Schatz et aL. 1973. 1975a.b). From microscopic re,,, * ility,
as we have seen in Eq. (35). the quantum mechanical forward and rtvers

0.

010
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Fig. Il Exact quantum (EQ) quasi-classical forward (OCF. quasi-classical reverse (OCRI %
and uniform semiclassical (US) reaction probabilities Po (a) and P02 (b). as a function of
initial relative translational energy EO and total energy & for the collinear F + H, - FH + H
reaction. The arrow in the abscssa indicates the energy at which the x - 3 state of the FH
proda b opet upf

reaction probabilities are equal. This is not the case for the corresponding
quasi-classical ones. because the initial and final states are treated differently.
In the quasi-classical forward method. the quantum vibrational energy of the
initial state n of the diatomic reagent is included in the initial conditions for
the trajectory calculations, and a reaction product P is classified as having a
certain vibrational quantum number n' if its final vibrational energy lies in
the range E. - J(E. . - E.,)to E. + E(EP. - ,). In the quasi-classical
reverse method, the probability for the n -n n' reactive process is calculated

.°I'
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FH + H reaction. Same curve labels and abscissa as for Fig. 16.

by integration from the initial vibrational state n' of the products to the final
state of the reagents R. which are defined as being in state n if their vibrational
energy is in the range Et - Y£E - E. L) to Ea + J(ERt I - E,). As a result
of this asymmetry in the manner in which the reagent and product states are
handled, the QCF and QCR methods lead to different reaction probabilities.
The usual QC method is the forward one, but Fig. 16 shows that for the
collinear F + H2 system, the reverse is a better approximation to the EQ
results. Because of this somewhat arbitrary way of quantizing the final states
of the products in the QC method, it is perhaps more appropriate to consider
the total reaction probability Pa' from state n of the reagents to all accessible
states of the products. This is done in Fig. 17, which shows that Po (QCF) is
significantly different from Pot (EQ), and therefore that quantum effects are
quite pronounced in this system. Although the QCR method works better
in this case, there is at present no a priori way to know that this will be the
case in any other system. Figures 16 and 17 show that the USC method is
more successful in the collinear F + H2 system than in the H + H2 system.
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A question of practical interest is what the ratio kORJ1 of the trans-
lationally averaged thermal rate constants of the n- 0-n'-3 and
n - 0 - n' - 2 reactive processes is. The answer to this question is important
in determining the extent to which the reactive process will generate a
population inversion of the FH n' - 3 and n' - 2 product states. In Fig. 18
we have plotted this ratio as a function of temperature for the EQ, USC, QCF,
and QCR results. As can be seen, the latter three are appreciably different
from the former, indicating the lack of reliability of quasi-classical or semi-
classical methods in predicting quantitatively the magnitude of population
inversions in this chemical reaction. One should therefore be very cautious
in using such approximate methods in the 3-PD world.

Another interesting question concerns itself with the extent to which
quantum effects in the F + D2 system are less pronounced than in the
F + H2 system. The FD quantum states to be considered, in comparison
with the FH n' - 2 and 3 states, are the n' - 3 and 4 states, respectively, for
the remasons mentioned at the beginning of this section. In Figs. 19-21 we
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have plotted, for the F + D2 collinear system, the curves corresponding to
the F + H2 system (Figs. 16-18). As can be seen, the quantum effects are .

noticeably decreased. In particular, the spike appearing in the Pot3 (EQ)
curve of Fig. 16, at low translational energies, and which is due to a Feshbach
resonance, is barely noticeable in the P1, (EQ) curve of Fig. 19. Nevertheless,
Fig. 21 still displays significant differences between the EQ and QC rate
constant ratios, indicating that quantum effects are still quite appreciable
in this system. The USC ratio, however, is very close to the EQ ratio.

We conclude that the collinear F + H2 and F + D2 systems display
si, niificant quantum effects that can be reproduced to a certain extent by
the uniform semiclassical approach. However, quasi-classical trajectory
methods are inappropriate for a quantitative determination of the disposal

*P of energy in the reaction products for this system.

O-
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2. Dynamic Resonances
The spike in the EQ curve of Fig. 16b, at a translational energy just above

threshold, is due to a dynamic resonance (Latham et a.. 1978; Kuppermann.

1981). Some of its characteristics in the three-dimensional world have
recently been investigated by an angular momentum decoupling approxima-
tion (Redmon and Wyatt. 1979). This resonance seems to be superimposed
on a large, direct reaction contribution. However, for the F + HD
FH + D. FD + H reaction probabilities depicted in Fig. 22 (Schatz et al,
1975b), we see strong evidence of a pure resonance in the n - 2 FH + D
product channel, near threshold energy, whereas none appears in the FD + H
product channels. This system is ideally suited for an experimental detection
of such resonances. It is expected that in the three-dimensional world the
differences between these two product channels will not be as pronounced,
but still very significant. At the resonance energy the angular distribution of
the v - 2 FH product is expected to be nonbackward-peaked oscillatory.

A due to the likelihood that the resonance will affect only some of the partial " -
waves that contribute to the reaction (see Section IIIH,8). whereas at other
energies the direct process should produce backward-peaked nonoscillatory
angular distributions. In addition, at nonresonant energies much less FH prod-
uct should be observed than at resonance. Finally, the resonant energy in the

6J
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* 3-PD world should be shifted toward higher energies by twice the zero-point
energy of the bending mode of the most-contributing strong interaction
configuration (see Section I.IH,8). These constitute theoretical predictions
of the existence of a dynamic resonance in the F + HD (v = 0) -. FH
(v' -, 2) + D reaction channel and of the fingerprint of such a resonance.
as well as the absence of one in the F +DH (v =O)-. FD(v' m,3, 4)+ H

L, channels. The prospect that such predictions may be verified experimentally
and lead to information about some of the details of the corresponding

0.2-

potential energy surface in the strong interaction region is a very exciting one.

10001

H. ELECTRONICALLIY NONADIABATIC E.XCHANGE REACTIONS

When a chemical reaction occurs that involves a change in the electronic
state of the triatomic system, te the oretical formulation of the exchange

reaction problem given by Eqs. (4) and (8) must be extended. In one form
of the general theory, we consider a family of electronically diabatic potential
energy surfaces as well as a family of coupling potential energy surfaces.

chanels Thepropecttha suh prdicionsmaybe erifed xpermenall
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potential curve). The arrow, near 0.04 eV in the lower abscissa indicates the energy at which the
n - 3 HF state opens up.

If the lowest two of these surfaces interact and the others are at energies that
are high compared to the collision energy being considered, we may use the
two-state approximation, in which Eq. (4), in scaled coordinates, is replaced
by the system of equations

a2 11 + 1 Rr } (R., r.) V - V 2(R., r.J0 2.(R., r.)

(5S)

+ + V2(R., r.) - j* 2(R., r) V2 (R.,, .)k I(R*, F.

where V, and V2 are the two electronically diabatic surfaces being considered
and VI 2 - V21 is the coupling-potential energy surface. The corresponding
nuclear motion wave functions satisfy the asymptotic conditions

* [exp( -ikjA.,RA) 6AA'a. + expdikA. R AfIAk1JAl,h(rA)
AmA

i - 1,2

X fj~x exrikA-ARA)OJA1 (R2), j-04I j - 1,2 (9

An
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where the fl'"' terms represent the scattering amplitudes from state
*A.,.(rA) of the reagents to state OJAI,(rA) of the products, with a, j 1, 2.
These equations can be solved by a straightforward generalization of the
methods outlined in Section ILE.

The reaction of Ba atoms with N20 molecules produces BaO molecules
in its ground X'Z and excited a3 rl states. This reaction was qualitatively
modeled as a collinear two-electronic-state process with N2 treated as a
single atom of atomic weight 28 and the 0 atom occupying the middle
position (J. M. Bowman and A. Kuppermann. unpublished results, 1973;
Bowman. 1975). The objective of this study was not to obtain agreement with
experiment but, instead, to investigate the dynamic properties of this model
and to test the validity of approximate methods on the same model

A ground (singlet) state and an excited (triplet) state LEPS electronically
diabatic surface, V, and V,, respectively, as well as an interaction potential
surface, V, due to spin-orbit interactions, were assumed (J. M. Bowman and N®R
A. Kuppermann, unpublished results, 1974). These three surfaces are de-
picted in Figs. 23-25. In them, coordinate R, is the barium-oxygen (non-
scaled) internuclear distance and R2 is the oxygen-nitrogen distance. The
lines in these figures along which solid squares are placed represent the
intersection between V and V,. V, has a barrier whose height is 0.05 eV with

* respect to the bottom of the N20 ground-state potential energy curve, and
its position was placed in the near-asymptotic region of the product channel
V, was also made 0.2-eV exothermic. This is substantially lower than the
experimentally determined 4-eV exothermicity, in order to keep the number
of open exit channels to a manageable amount while preserving the character-
istics of the surface crossing. For the total energies considered, V, is ener-

• •getically inaccessible except in the near-asymptotic and asymptotic regions of
the product channel. Vi has a maximum value of 0.05 eV and is localized along
the seam of the intersection of , and V.

The range of initial relative kinetic energies considered in these calculations
was 0.0-0.12 eV. In this range the number of open vibrational states of the
model BaO(X'Z) is between four and six and that for the model BaO(a- I)
between one and three. Calculations were also performed (Bowman et aL,
1976) using the trajectory surface-hopping method (in the simple Landau-
Zener version) of Tully and Preston (1971).

The result of some of these calculations is given in Fig. 26. P-,... is the
reaction probability from state i, n of N20 to state i, n' of BaO, where n and
n are vibrational quantum numbers, i or r - 1 refers to the ground electronic
states and r - 2 to the triplet states. It can be seen that for E0, less than 0.05-eV '0.
P%_-10 is the dominant reaction probability and that the quantal and quasi-
classical results agree in average for this electronically adiabatic transition.
The existence of quantum oscillations in this and the other Pa-,, versus

tt4
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ig. 23. Potential energy surface for the X 'I state of a model collinear BaON2 system. Rz
is the O-N: unscaled distance and R,. the Ba-0 distance.

energy curves is compatible with the de Broglie wavelength analysis outlined
in Section ILC (Bowman et al, 1976).

Comparison of the quantal and quasi-classical electronically nonadiabatic ,
reaction probabilities P%- 0 of Fig. 26d shows fairly good average agree-
ment for Eo between 0.05 and 0.07 eV, but at somewhat higher energies.
the quasi-classical result differs significantly from the accurate quantal
result. This disagreement should be due at least in part to a shortcoming of
the simple Landau-Zener surface-hopping model used in these calculations.
The seam between the singlet and triplet surfaces used is located in the product
channel and is displaced from the equilibrium internuclear position of BaO
toward greater internuclear distances. This means that the ground-electronic-
state BaO product must have about one quantum of vibrational energy before
the seam can be reached classically. This should result in a significant de-
crease of the amount of quasi-classical surface hopping in comparison with

*1
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* ~ftg 2C. Potential energy surface tor the a~fl state of model collinear flaON, system
Coordinates have the same meaning as in Fig. Z3.

the quantum situation, since in the latter case the seam is felt over a wider
range of internuclear distances. Such analysis is consistent with the fact that
the quantal and quasi-classical PRIO- 0 effective thresholds are approxi-
mately equal to the corresponding values for the electronically adiabatic
10 -~ 1I and 10 -12 reactive processes that produce vibrationally excited
ground electronic state products. This suggests a correlation between -;-iba-
tional excitation of BaO (X 'Z) and formation of BaO (a~fl).

One may improve the surface-hopping model by permitting hopping to
occur from a band around the seam rather than at the scam only. Even then.

S this first-order perturbation model may not work too well for systems for
which the electronically nonadiabatic transition probabilities are large.
Caution in using quasi-classical methods must be exercised even for systems
as heavy as the present one. The large quantum effects resulting from these

*J
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Fi. 25 Spin-orbit interaction potental energy surface for model collinear BaON, system.
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collinear calculations will not necessarily disappear in going to the real three-
dimensional world.

1. COLLISION-INDUCmI DISSOCIATION AND THRa-BODY RECOMBINATION

The problem of calculating the quantum probabilities of the collision-
induced dissociation process A + BC - A + B + C and of its reverse
three-body recombination is conceptually a very difficult one. The reason is
that in the three-body channel the motion associated to both the R, and r,
coordinates is not quantized, involving thereby a double continuum of
states.

About 20 years ago, Delves (1959, 1960) suggested that the problem could
be reformulated in a system of coordinates involving only one continuum.

,1

'1

*1
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Fig. 2 Reaction probabilities for the model collinear Ba + ON 2 - BAO(n'). BaO°(n ')

+ NI as a function of initial relative kinetic energy E0 . BaO and BaO represent the X I and
a In states of the diatomic product, respectively. (a)-(c) Reaction probabilities to form BaO in
a' - 0. I, and 2. respectively, from pound vibrational state reagent ON,. (d) Reaction prob-
abilities to form BaO, in n' w 0 from ground vibrational state reagent. The exact quantum (EQ) 0
and quasi-classical (QC) probabilities are represented by solid and dashed curves, respectively.
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These coordinates are depicted in Fig. 3. They are the circular polar co.
ordinates p. a indicated. At a fixed p, V(p, a) .ecomes practically infinite for
a - 0 and a - m due to the practically infinite repulsive interatomic inter-
actions occurring when r. - 0 (for which B and C coincide) or r, - 0 (for
which A and B coincide). This is true even for values of p corresponding to
points in the dissociative plateau A + B + C region of Fig. 3. As a result.
the eigenfunctions of the Hamiltonian

hP d2h(2: p) =-+ V(p, 2) (60) -

for constant p constitute a complete discrete (but infinite) set of orthonormal
basis functions in terms of which the scattering wave function 0(p. m) may
be expanded, resulting in a discrete (but infinite) set of coupled channel
equations, even at dissociative energies, which may be solved by techniques
analogous in spirit to those outlined in Section ILE. Comparison of the
results of such calculations with corresponding quasi-classical trajectory
ones are useful in establishing the conditions under which the latter may
give reliable results (Kaye and K uppermann. 1981).

Ill. The Quantum Dynamics of Three-Dimensoal Reactive
Triatomic Systems

In this section we generalize the description of the electronically adiabatic
reactive scattering of collinear triatomic systems to three physical dimensions
(3-PD). The corresponding formalisms are analogous. The restrictions on
the total energy will be the same as those for the I-PD systems. One difference
is that the partial first derivatives with respect to the two scalar distances are
replaced by the gradients with respect to the corresponding position vectors,
and appropriate spherical scattered waves replace the corresponding col-
linear plane waves. An additional difference is that for A + BC reagents, two
reactive product arrangement channels (AB + C and AC + B) are allowed,
rather than only one. This results in an interesting "bifurcation" problem.
not encountered in the collinear case. The scattering and reactance matrices
are introduced analogously to the I-PD case, after an appropriate partial- .
wave expansion.

A. SCALED COORDINATES

It is convenient to begin by introducing the 3-PD counterpart of the I-PD
scaled coordinates. We label the three atoms A , A., B - AP, and C - AT.

,. ,
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* A.

A,

F. 27. Relative position vectors for triatomic system in three physical dimensions (3-PD).

Let Aw be a cyclic permutation of the indices aPy. We define the A coordinates
AV (A - a4 #, y) as r, the internuclear vector from A, to A., and R,, the position

vector of AA with respect to the center of mass GA4,. of the A, A. diatom. The
angle in the 0-it range between these two vectors is labelled 7,. These co-
ordinates are displayed in Fig. 27. In terms of them, the nuclear motion
Hamiltonian. after removal of the motion of the center of mass of the system,
is

H- -- V 2. - Y V2 + va(RZr;,yA) (61)
A 2p,. Ay (1

where the reduced masses are analogous to those given by Eq. (3) and V1. and
V, are the Laplacian operators with respect to the coordinates Rj and r ,
respectively. The potential energy function now depends on 7, in addition to

* R' and rj. Its topological characteristics will be described in the next section.
We ilow introduce the scaled position vector coordinates RA, rA as a three.
dimensional generalization of Eq. (10):

RA -, aRL, rA - (aA)-r , aa = (j.A./p,)"', A - a, /. (62)

In terms of these coordinates, Eq. (61) becomes

H - -(A 2/,2./)(VIA + V,) + VA(RA, rA, YA) (63)

The reduced mass 14 which is independent of A, is the same as that given for
the collinear case by Eq. (12).

The transformation from A coordinates to v coordinates is now given by

COS c ,A -sinZ;A RA- (64)
r,) (sin MA cos ,A)( r(6

q*0
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C.,

where

cos Ma. - mAm,,/l(mA + mXm, + m)I (65)
sin aA - (m.M/((mA + mXm, + m)J}1 2 6

Equations (64) and (65) represent a rigid rotation in the six-mathematical
dimensional (6-MD) configuration space spanned by the Cartesian compo-
nents of Rt and r1. This is not the case for the corresponding transformation
of the unscaled coordinates. The A Laplacian operators have the propertyv2. + v'. _ V2, + V2 .V2 + V2. V266

Vk+to ,+V V,+v~ (66)
where V2 is the 6-MD scaled configuration space Laplacian, which, as for
3-MD, is invariant under rotations. With this notation, Eq. (63) can be
rewritten as

H - -(h 2 /4) V2 + V (67)

This Hamiltonian describes the motion of a single particle P of mass u in the
6-MD scaled configuration space subject to the potential V. Therefore, the
motion of the three-particle ABC system in 3-PD space is isomorphic to the
motion of P in this 6-MD space. As a result, the de Broglie wavelength
analysis of Section ILC continues valid for the 3-PD case, as long as the
change in local wave number is examined in the proper 6-MD space. This
isomorphism permits an extension of the techniques used to treat the
quantum mechanics of single particles in 3-PD space to three-patile (or
actually, to many-particle) systems.

B. POTENTIAL ENEoGY SURFACE MAPPING IN SYMMETrIZE
HYPERSPHIERICAL COORDINATES

In order to facilitate an understanding of the nature of the 3-PD reactive
scattering problem, it is useful to be able to visualize the spacial character-
istics of the potential energy surface VA(RA, rA, yA. For the collinear case,
for which YA - x or 0, these characteristics were displayed in Fig. 3, in which
contour lines of constant V were depicted in the 2-MD scaled configuration
space R., r.. In the present case, the configuration space is six dimensional,
but V is a function of three variables only. It would be convenient therefore
to display surfaces of constant V in an appropriately chosen 3-MD space in
which for every configuration of the three atoms, there would correspond
one and one only point Q. Since, for YA - x, that space was 2-MD Cartesian.
a first attempt would be to consider RA, rA, 7A as the cylindrical coordinates
of Q, such that for configurations having a constant 7A, V(RA, rA, 7A " con-
stant) would be represented by contour lines on the 7A - constant half-plane

' *1

.- 1
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RX-

7, A:..

F L 3. Cylindrical and spherical polar coondinates for mapping potential energy fumtwo
for tioacollinear triatormc sysem.Al

depicted in Fi& 28. If that were done, the spherical polar coordinates of the

same point Q would be p 4A , and YA, where

p(R2 + r)l 2  qj- _tan'(- J OI7~* ~

The quantity p is invariant with respect to a A - v transformation and is
called a hyperradius. These cylindrical and spherical polar coordinates are
also displayed in Fig. 28. A typical equipotential surface is displayed sche-
matically in Fig. 29, at an energy below the dissociation energy. This mapping
suffers from two crucial defects. First, it does not have the basic one-to-one

fcorrespondence property between configurations and points Q. Indeed, for
collinear configurations in which Ai coincides with the center of mass of
A.A., VA is arbitrary. Therefore, all points on the circle C on the XA Y
plane, whose radius is the scaled A,A. distance, are associated with that
single configuration. Second. even if the three atoms A ,, A,. and A, are
identical, as for the H 3 system, the equipotentials of V below the dissociation
energy would still have the general shape indicated in Fig. 29, with the
shape of the AA + A,A. region (in which AA is not too far from A,A) distinct
from the shape of the A, + AAI region obtained by an interchange of atoms
AA and A,. In other words, the equipotentials of V, in this map, do not have
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;

Fig. 29. Equipotential surface for noncollinear A4A,A, triatomic system in spherical polar
oo ates p - (RI + r)" 2. 4A. tan-tmn A and ?A-

the symmetry we would desire with respect to the interchange of identical
atoms.

A way to eliminate the first of these defects is to choose for the spherical
polar coordinates the quantities p, &

0 A - 2q, and 7A, as indicated in Fig. 28
by point P. This "umbrella opening" transformation on p, qA, VA (in which
the colatitudinal angle of every point is doubled) collapses the circles C of
Fig. 29 into a single point located on the negative half of the Zt axis (see
Fig. 30). It turns out that in this same p, A, YA system of polar coordinates,
the equipotential surfaces are also symmetric with respect to the interchange
of idcntical atoms! (Kuppermann, 1975). Therefore, for the H3 system, they
display the symmetry properties of the C3v-point group. In Fig. 30 we have
depicted schematically an equipotential surface at an energy below the

Z%

4

AL*AA

66
A. AXA . c A. c'+A A,

FiW3.L Equipotential surface for noncollnear AA A.A. triatomic system in sphencal polar
coordinates p - (R + rI, 2. 9 1 - 2 tan '(r,. R,). and VA.
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0 dissociation energy for a system of three identical atoms. Actually, we should
have indicated only the Y > 0 half-space, since 7A lies in the range 0--M.
However, we reflected this surface through the XAZ plane to facilitate
visualization. As a result, every triatom configuration (except those for
which -'A - 0 or 7A - x) is represented in Fig. 30 by a pair of points, sym-
metric with respect to that plane. The hole around the origin is due to the
strong repulsion occurring at configurations for which all three atoms are
close together.

This mapping of V has an additional property that is of great usefulness.
A A -. v coordinate transformation in the 3-MD XL YZA internal configura-
tion subspace of Fig. 30 is a rigid rotation around the YA axis (Kuppermann,
1975). This means that this transformation is equivalent to moving the ZA
axis to the Z, position indicated in Fig. 30, while otherwise not changing
the shape of the equipotentials. This shape invariance with respect to co-
ordinate transformations indicates that this map represents all regions of
configuration space in an equivalent way, regardless of the choice of L For
this reason, we call the coordinates p. wA, yA smnmerized hyperspherical
coordinates. At large values of RL, the rotational motion of A,A. is indicated
by a rotation of the representative point Q around the ZA axis, the vibration

* of A,A. by an oscillation of Q perpendicular to that axis, and the approach
of A4 to A,A, by a motion of Q parallel to the same axis. Similar statements
are valid for the A, + AA, and A. + AtA, configurations, with the ZL axis
replaced by Z, and Z., respectively. Therefore, a nonreactive collision would
correspond to approaching the origin from the large Zj direction and then
reversing its general direction, whereas a reactive one involves having Q

* -approach the same way but move out along the Z, or Z. directions while
rotating and vibrating around those axes. The dynamical details of these
processes depends on the internal topology of these equipotentials, Le., the
nature of the passageways between the different arrangement channel
regions of Fig. 30.

In order to visualize the nature of this topology, we display in Fig. 31 cuts
of the equipotentials of V by the XZ. (y. - 0, x) and Y.Z, ('. - n/2, -x/2)
planes for the Porter and Karplus (1964) H3 potential energy surface. The
bottom part of Fig. 31b corresponds to the region halfway between con-
figurations A. + A.A. and A. + AA,. All classically allowed pathways
leading from one to the other of these configurations, at total energies not
exceeding 0.6 eV, must pass through the hatched area enclosed by the cor-

* responding equipotential. The 30 angle between the negative Z, axis and 0
the line (not depicted) from the origin 0 tangent to the 0.6 eV equipotential
is roughly indicative of the angular deviation from collinearity that classically
still permits a reaction to occur at that total energy. Therefore, this mapping
gives an intuitive feeling for the dynamic properties of the corresponding

A4
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Mig 31. Cuts ofequipotmnual surfacs for H .(a) Cut through X.Z. plane (b)Cut through
Y./, plane. The otit ofmeasuremeat ofthe eney is the minimum of the isolated H 2 diatoms:
potential ene curve. The curves aim intersections ofthe equipotentials with then planes. Their
enepes ramp from 0.3 to1.5 eiYn step o03 eV. as indicated on top of figure.

system. It is also very helpful in developing theoretical approaches to the
solution of the quantum reactive scattering problem. as indicated in Section
I, G.

C. RIcArCTm-ScAru FoRmALSM

We start out by choosing a system of coordinates that spans the 6-MD
configuration space in which the motion of the triatomic system, after re-
moval of the motion of the center of mass, takes place. Let Oxyz be a system
of coordinates whose origin 0 is the center of mass of the system and whose
axes are parallel to a system of laboratory-fixed axes. We will call Oxyz the
laboratory-fixed system. The spherical polar coordinates of the scaled Rt
in this system arm RA, #,, OA. Let us also define a body-fixed coordinate system
OXIYAZi (not to be confused with the axes of Figs. 28-31) obtained by
rotating the Oxyz axis by the Euler angles 0,%, 01, 0. The resulting OZ1 axis
points along the RA direction, whereas the OYA axis is in the Oxy plane. The
Oxyz and OXA YZA axes are displayed in Fig. 32. The spherical polar co-
ordinates of rt in the space-fixed system are rf - (ri, 9,,, O,) and in the
body-fixed system are r, (r,,, 1a, *) where ?a is, as before, the angle
between R , and r1 and #, is a tumbling angle around the (RA, Oz) plane.

In this presentation we chose body-fixed coordinates because they lead to
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Fill. 32. Body-fixed and space-fixed coordinates for tritomic system in three physical
dimensions.

simpler final expressions for the cross sections and to a simpler solution to
the bifurcation problem. However, space-fixed coordinates can also be used
(Pack. 1974).

In terms of these body-fixed coordinates, we wish to find the solutions
of the Schr6dinger equation:

E* -
' EOA'ak. (69)

which satisfy the asymptotic condition for large RA (A - a, , y)

+ fAnk;(91, bf ~(0
An"A CO exppa,,.,,.A,.,J,;)J,..(.0)

ABA

In these expressions A and A' designate the final and initial arrangement
channels, respectively, and nA is the set of quantum numbers cA, jiA, mJA of
the A.A. isolated diatom where CA is the vibrational quantum numberJA its
rotational angular momentum quantum number, and mjA the quantum num-
ber associated with the projection of the diatom's rotational angular mo-
mentum along the direction of the final relative wave-number vector kkLjA
(i.e., the helicity polarization quantum number) which, as RA - 0, lies in
the 9A, #A direction. Similarly, n . represents the corresponding quantum
numbers c' ., JA., m, of the initial diatomic reagent A,.A.., where the axis
of quantization for ntnr. is the direction of the initial relative wave-number
vector kA.,,.,j;. that has been chosen to lie along the laboratory-fixed Oz



130 Aron Kuppermann

axis. R, is the component of R1 . along that axis. As RI. -- a, RA. lies in the
-k .j.. direction, i.e., in the negative Oz direction. In other words, in the
helicity representation, the axis of quantization for the reagent and product
diatoms are. respectively, the initial and final relative wave-number vectors.
This particular choice of representation greatly simplifies the expression for
the scattering amplitude given by Eq. (89) of Section IIIE.

The A.,(rbA) and 0.k,(-) in Eq. (70) represent the diatomic product and
reagent rovibrational eigenfunctions, respectively, in scaled coordinates, and
in the helicity representation; (RA) = exp(ikAjARA) represents a spherical
radial scattered wave and exp(ik',.,A,RA ) is a plane wave representing the

initial relative motion of the atom AA. with respect to the diatomic molecule
A,. A., in scaled coordinates; and finallyfj '(Gj, A) is the scaled coordinate
scattering amplitude from initial state A'n . of the reagent to final state ,nA 4,.,

of the product, for initial and final relative atom-diatom wave-number
vectors k,,.i. and kU,, respectively, 1 being the polar angles of the
latter with respect to the former in the Oxyz system whose Oz axis lies along
k. ,. The magnitudes of these wave numbers satisfy the energy conserva-
tion relation

( Itk A..-/2L) + E,.'. . (A 2 (hk ,,j/) + E,, -A E (71)
,A - a, ,y i

where E.C,.jj. and E,,, are. respectively, the rovibrational energy of the
initial and final diatoms and E is the total energy of the system The unscaled
coordinate scattering amplitudef,A,(8, )) is related to the scaled one by

f'"A'(O,, O) = (aj- '(aA/aA)"'f,,: '(OA, 0)) (72)

where the at terms have been defined in Eq. (62), and the differential cross
section for the .n . -, An,, process can be obtained fromf A."'" by the expres-
sion

A:.,;'(, , - (OA J,..A..)l , J a(OA, .)1 (73)

where vu,, and v'.., are the final and initial unscaled coordinate velocities,
respectively.

The sum in the right-hand side of Eq. (70) includes the closed-channel
terms, for which EA,,j, > E, for the reasons given following Eq. (6) of
Section II.

In the present formulation the A,, A,, and A, atoms have been considered
distinguishable. When they are not, the scattering wave function must be
made to satisfy the Pauli principle. This can be achieved a posteriori, after
solving the Schr6dinger equation and ignoring this principle, as exemplified
in Section IJF for the H3 system.



Quantum Calculations of Reactive Systems 131

D. SCATTERING AND REACTANCE MATRICES
* p.

As in the collinear case, it is convenient to introduce scattering and react-
ance matrices in order to separate the problem of finding solutions of the
Schrddinger equation (69), satisfying arbitrary asymptotic conditions. from
the problem of finding the scattering amplitudes of Eq. (70). We start by
defining the functions Ojw '(Ik, rb') where ft A is the unit vector in the Rj

*direction, defined by the laboratory-fixed polar angles 9A, 4,1 This function
of the five scalar variables 9A, OA, YA, *1 is defined as a simultaneous eigen-
fuinction of the following five operators:

(1) the square of the triatomic system total angular momentumA
(2) the Oz laboratory-fixed component of that angular momentumJ,;

110; (3) the energy of the isolated A, A,, diatomh,;
(4) the square of the rotational angular momentum of that isolated

diatom jj.,; and
(5) the component of that angular momentum along the body-fixed

OZA (iLe., Rj xi UjSza,.

The quantum numbers associated with that set of operators are J, M,9 Cl IJA,
0and 11,, respectively, and bt designates the cA, jA, flt subset. The quantum

number l,~associated with the tumbling motion of the triatom around Rj, and
described by the tumbling angle *A, will play a special role in the computa-
tional methodology described in Section III.G.

The functions 01MA A rbA) are called surface functions. They form a
complete discrete orthonormal set that spans the 5-MD 8,i, 40a, ra, 7a, O'A
subspace of the 6-MD configuration space. They are given by (Schatz and
Kuppermann 1976b):

0 I~(tA. rWA;) - P(J +l/Z"DJA~,9)~i&r) (4

where DJa is a Wigner rotation function and4A,jAOA(r') is a simultaneous
Ok eigenfunction of the hj., (Hamiltonian). j~j,. and j,, operators of the

isolated A,, diatom in the scaled-coordinated o2'. Y4Z4 body-fixed
system of axis. If the electronic state of that molecule is a 1: state, theO 0 ~jADA
are given by

'*;-IJADA(r'A) - (rAY AAArl'a(a A (75)
where YJADA is a spherical harmonic and OAA satisfies the radial Schr6dinger
equation

d'+ VA(rJ )U% + Oh-J
4

IAiA(rA) Ek J ACAJA(rA) (76)

2p PA 2@I

J0'
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where oa(rA) is the interatomic potential of the isolated A,A. diatomic
molecule.

Let *JsjA*j' be a simultaneous eigenfunction of H. J1, and J_,. We can
expand it asymptotically for large RA in terms of the surface functions
according to:

€,J,,'b . .. . (R ( RI",1'.A, rt) (77)
AhA

where the radial functions g behave asymptotically as

( jM' [L)A£X '")A-"A'gRA(' M )A)(8

This expression is the 3-PD counterpart of Eq. (20) where the symbols have ,d
similar meanings. As before, A and B are integration constants, v is the (real)
velocity, k is the channel wave number given by an expression analogous to
Eq. (21), and .f' and &' are the incoming and outgoing waves given by

,JJJI(R) - fexp( -,tkA ,ARA - J(J + jA)x]) for open channels

exp(IkkAjRA) for closed channels

(79)

' expIkk,,AJAA - (J + jMR) for open channels

- lexp(-IkAA IR) for closed channels
(80)

The phase J(J + jA)x in these expressions is introduced for convenience in
simplifying subsequent expressions. We can rewrite Eq. (78) in matrix form as

VJm" , v - "1z( JJAJMJ - CJBajmJ (81)

which is the 3-PD.analog of Eq. (24), the corresponding matrices being
defined similarly, with the rows and columns scanned by the quantum num-
ben Abt and .'b'., respectively. ,.

We now define an intermediate scattering matrix Ss by

Simi o, SSAJU (82)

and the body-fixed helicity scattering matrix S' by

* (S', ,,.,, A- -M'IA , (83)

The negative sign in the column label of this expression is introduced be-
cause as RA. - , R&. and kA.., become antiparallel. Again, as in the
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* colinear case, the scattering matrix relates the coefficients of the outgoing
waves to those of the incoming ones. It has a set of properties analogous to
those of the collinear case. They are (Lane and Thomas, 1958):

(1) S is unique, Le., is independent of AJM" and of Mj, but depends on
E and J.

(2) The open part SJ of $J is symmetric. This property leads to the
principle of microscopic reversibility.

(3) S- is unitary. This results in the conservation of particle flux. Eq. (81)
can also be written as

g, -- v - 2["JC'" + W"JD'D ]  (84)

where gJl" and v are the same, C " and DJmj are new integration constant
matrices and -90 and 'J are diagonal sine and cosine stationary wave matrices
whose diagonal elements are given by

fsin(k,,. -A ( + J)] for open channels
lexp(Ikj, I RA) for closed channels (85)

' ,(RA) - cos(k AJARA - (J + j,)n) for open channels
1exp( -kk,, RA) for closed channels (86)

The reactance matrices are defined, by analogy to the scattering matrices, by

I 0Jj - RCJkJ, (RJ) c M J.-. 'c.i..n ... i. (87)
AChJAM'jA AcJA

0
AA (87)

•The body-fixed helicity reactance matrix RJ has the following very important
properties, analogous to those for the collinear case:

(1)" RJ is unique;
(2) ' is real; and
(3) the open part R,. of R' is symmetric.

* The following relation, analogous to Eq. (30). is valid:

s, - (I + iRtXI - i R)-' (88)

In addition, expressions analogous to Eqs. (31) are valid.

0
E. DsmNGUISHABLE-ATOm SCATrERING AMPUTUDES AND CROSS SECTIONS

From Eqs. (70) and (77)-(83) we can derive the following expression for
the scaled coordinate distinguishable-atom scattering amplitude for the

t0
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-'n . - An transition in the body-fixed helicity representation (Schatz and
Kupperzann. 1976b):

V'e'A1/2 exP(i, 0a) iii+1)d. (I)XTJl.'
V ~c jA 2/ ,j~2 k .c .j,( + J o " "

U (89)

where the transition matrix T. is defined by

T. -I - (90)

This expression is reminiscent of that for the scattering of a single particle
by a central field. Its simplicity results from the choice of the body-fixed
helicity representation. The corresponding unscaled coordinate scattering
amplitudesf' can be obtained from Eqs. (89) and (72).

From Eqs. (89), (72), and (73) we can derive the following expression for
the ,'n. -* ,n distinguishable-atom differential cross section (Schatz and
Kuppermann, 1976b):

U"'(8L) A (4k~'.,..) (2J + 1) d.1)..,, (XTjo),'?'" (91
(4- 1. n (91)

where k' denotes the initial wave number in unscaled coordinates,
Several consequences result from this expression. One of them deals with

the nature of the dependence of a on 0;. We note that the functions d.JA,.
are real and that the associated Legendre functions are particular cases o
these d functions, with either mA or m;. equal to zero (Davydov, 1965). The
(e terms display an oscillatory dependence on 01: the higher the value of J,
the faster is the rate of oscillation. Nevertheless, for direct reactions, such as
the distinguishable atom H + H2 exchange reaction, the variation of a with
84 is monotonic (see Section IIH,4). The reason is that the phases and am-
plitudes of the T. matrix elements bear a relationship to each other that
leads. for such reactions, to the disappearance of the oscillations in a. As a
result, if differential cross sections devoid of spurious oscillations are to be
obtained from ab initio quantum mechanical scattering calculations, a

0@ sufficiently accurate scattering matrix must be obtained from such calcula-
tions (Schatz and Kuppermann. 1976c). More specifically, not only must
we accurately calculate the absolute values of its elements, but the corre-
sponding phases must be determined accurately as well.

'I
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We also notice that although the scattering amplitudes depend on 0, the
differential cross sections do not. The reason is that the initial probability
density is cylindrically symmetrical around the quantization axis, and there-
fore so must the final one be., in the absence of external fields. In addition,
since d,..(O)- 6.., and d.(n) (-l) 6.._, we conclude from
Eq. (91) that for m;y,. * mj,, al,'.k'(O) vanishes, and for m;. , -mJA, o,,()
vanishes. These rigorous selection rules for forward and backward scattering
are related to the conservation of J, (Schatz and Kuppermann, 1976c).

The integral cross section Q ,'' defined as the integral of the differential
cross section over all scattering directions, can be obtained from Eq. (91) as

S= L Y(2J + Il(T )Z.=',Il2  (92)

In contrast to the differential cross section, we do not need accurate phases of
the transition matrix to obtain accurate integral cross sections. Therefore,
the latter cross sections are easier to calculate than the former.

The unitarity of S-. permits us to define the n.-- AnJ partial wave
reaction probability as

nA = (SJO), 1' (93)

in terms of which the i'n . - ,nt integral cross section for transitions other
than the elastic one (i.e.., for An,, 0Vn'.) can be written as

..,2L X(2.+ 1 n)Pa,' An, n. (94)

Both o.j' " and QA' may be averaged over the initial m. and summed
over the final mA to give the degeneracy-averaged quantities ' ' and
Q4e'a' respectively. The latter can be written, for inelastic or reactive transi-
tions, as

QLA" kF 0 ,AJ ',', . kc~jA A .J. (95)

where AtAJA is the opacity function defined as
PA-A = (2A. + I)-' I p (96)

IJANA(6.

Although the last two expressions were obtained from the body-fixed helicity
representation, the same degeneracy-averaged Q-'tVJA' and partial wave
opacity function PM.,, would have been obtained if we had started from

other representations.
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From the properties of the open part ofthe scattering matrix we can derive
related properties of the cross section, reaction probabilities, and opacity
functions. From its unitarity we obtain:

(1) Conservation of flux for body-fixed helicity transition probabilities,

X - 1 (97)
ANA

(2) Conservation of opacity,
- .. (98)

From the symmetry of S. we obtain:

(3) Microscopic reversibility for body-fixed helicity transition prob-
abilities,

- P',. - (99)

(4) Microscopic reversibility for opacity functions,

(2A. + .)--/A' - (jA + A,- '€. (100)

(5) Microscopic reversibility for body-fixed integral helicity cross r"o

sections,
k' Qj, a .. k'- W . . A-A (101)

(6) Microscopic reversibility for degeneracy-averaged integral cross
sections,

( .. + 1' x.sA. A (2j, + ])kQ'a A'fx.Ax. (102)

(7) Microscopic reversibility for body-fixed helicity differential cross
sections,

k's a () ' - k ,.(O. - ) (103)

Equations (97)-(103) relate properties of forward (' -. A) and backward .
(A -. L) processes occurring at the same total energy E, and care must be
taken not to apply them. by mistake, to such collisions occurring at equal
translational energies.

F. CRoss SecnoNs FOa SYsM CONTAINING IDencAL ATomS

ir the three atoms of the triatomic system being considered are not all
distinguishable, we must include the effects of the Pauli principle on the
reactive scattering problem. The interaction energies between the nuclear
spin and the orbital motions are in general several orders of magnitude
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smaller than the Bom-Oppenheiner interaction potential in the regions of
configuration space of interest to the scattering process. We will therefore
neglect those spin-orbit interactions in the present considerations. Under
these conditions, the Pauli principle may be introduced by the techniques of
post-antisymmetrization (for identical fermions) or post-symmetrization (for
identical bosons). For example, for the H 3 system, there are only two inde-
pendent sets of distinguishable scattering amplitudes: reactive (or exchange)
f", and nonreactive (or direct), f'". The appropriately antisymmetrized
scattering wave functions can be obtained by taking linear combinations of
those of the distinguishable atom (Kuppermann et al. 1976), and. as a result.
the correct antisymmetrized differential cross sections can be expressed in
terms of thef" andf'" (Schatz and Kuppermann, 1976b) as:

(1) para -paraV,jeven)

= If'" _f.".'z (104)

(2) para - ortho (f even, j odd)

0 '3v., I (105)
Pe.r

(3) ortho -. para (f odd, j even)

e. = fIf 12 (106)

(4) ortho -- ortho (f, j odd)

" > (If'f_" +f' "12 + 2If'_"'1) (107)~V'y

In these expressions, the indices A and .' were omitted, due to the identicity
of the three atoms As before, the v' quantities are the channel velocities and n
stands for the set of diatom quantum numbers c.j. m in the body-fixed helicity
representation. Although the calculations that furnish thef'" and f'" are
for distinguishable atoms, for which the Pauli pnnciple is ignored. Eqs.
(104)-(107) furnish the correct cross sections, which can be compared
with experimental results. It should be noticed that in Eqs. (104) and (107), to
which both f"' and f contribute, interference effects between these two
scattering amplitudes are present due to the f" - fa terms

%J
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G. COMPUTATIONAL MmODOwOY

So far we have indicated how once the scattering matrix of a reactive
system is known, the scattering amplitudes and cross sections can be ob-
tained. In this section we outline how that matrix can be calculated once the
system's electronically adiabatic potential energy function VA(RA, rA, VA) is
known.

As in the collinear case (Section i), several approaches are possible.
However, only three coupled-channel methods have been used so far in cross-
section calculations for 3-PD systems. One of them, developed by Elkowitz
and Wyatt (1975ab), uses natural collision coordinates (NCC) and local
hindered asymmetric-top-vibrator basis sets, as reviewed recently by Wyatt
(1979). Another. developed by Kuppermann and Schatz (1975), uses asymp- (
totic free rotor and local vibrator basis sets, and different coordinates in
different regions of configuration space, similar to those described in Section
JJ,E. The advantage of Elkowitz and Wyatt's approach is that their basis
functions furnish an efficient representation of the local motion and contain
very useful interpretive information in the form of asymmetric top-rotational
energy correlation diagrams. However, the NCC are more cumbersome to
use in the representation of the potential energy function and in the calcula-
tion of the matrix elements that appear in the coupled-channel equations.
The third method was developed by Walker et aL. (1976. 1978) and has
elements in common with both the Elkowitz and Wyatt and the Kuppermann
and Schatz approaches. We now review the latter (Schatz and Kuppermann,
1976b). We first define the complete discrete orthonormal body-fixed basis set:

Y'Jf0A(o,, 10, 7A. 1# ( 0 1"., o)Yj.a,(yA, 0,A) (108)

Th.se are simultaneous eigenfunctions of the operators J2, J:.,o j., and
jz, defined at the beginning of Section IILD. They span the 4-MD subspace
derted by the angular coordinates 8A, OAa,,,*. We now expand, in this
basis set, the wave functions *1M*, which are simultaneous eigenfunctions of
H, J2, and J,, expressed in A-arrangement channel coordinates RA. r~t:

* {k(RA, - (torA) 'F'JaA(RA. r,)/,,(,A, OAP YA. A)
La -JiA- 3a|

(109)

Replacement of this expansion in the Schr~dinger equation furnishes the

*0)
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following set of coupled-channel partial differential equations for the func-

JA

where the kinetic energy operators:t are given by

A2 2

'JAJQ( , IA) !2- ' j "2 JjA A

,. ,- ,- ,u k +aR 7 , a, + r,. ,F~j.,

-Ijj+ 1) vmm )JII, EF j( 0

andr the potntil energy ftomatrix aelement by i
+ [J(J + 1) M2A + jA(jA + 1

VkR9 r)= <~2I(RrY)A 2  (112)

A.(W.,.,

pn (en) of -au(20w4t 1)].A ,  Id lyAlla

the quantum numbers 1, jA, QA. For reactive systems, the range of total
angular momentum quantum numbers J that contribute appreciably to
the reactive cross sections is usually much smaller than that which contributes
to nonreactive inelastic cross section and in many instances these C A

terms can be neglected. In this case Eq. (110) becomes diagonal in "A' Le
the F,jA, for different tumbling angular momenta in arrangement channel A
are decoupled, since the VAI/t do not couple such functions. This leads to
the tumbling decoupling approximation. considered in Section IILH,I10.

Equation (110) contains the same two distances RA, rA as did the Schr6-
dinger equation for collinear triatomic systems considered in Section II,A.
The main difference is that instead of a single equation, we now have, for
each J, a system of coupled equations scanned by the rotational quantum
numbers ji and fl. The potential energy function couples different jA
(because of its dependence on -). whereas the angular-momentum tumbling
centrifugal terms couple different fl. In addition, instead of only two
arrangement channels (reagents and reactive products), we now have three
such channels (one reagent and two product arrangements). The method of
solution of these coupled-channel equations is described most easily by
considering the internal configuration space RA, rA, yA in the symmetrized
hyperspherical coordinate mapping of Section IlI.B. whose coordinate axes

* ,- _
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A),+A tc all

A.

WIrk

A, + A), AV, AAA

Fig. 33. Intersection of matching half-phanes XA. X,. X., with the X&Z, plane of Fig. 30.
Curves are intenrteo. s of an equipotential surface with that same coordinate plan

are X A A ZA (not to be confused with the axis of Fig. 32) In Fig. 33, we indicate
an outline of a equipotential on the XAZA plane (which coincides with the
X,Z, and X.Z, planes), and the intersection with that plane of three half-
planes, labeled XA,, x,., and .A, whose common edge is the Y axis (which
coincides with the Y and Y. axes), perpendicular to the plane of the figure.
These half-planes divide the internal configuration space into three arrange-
ment-channel subspaccs. A,. v, and K. When augmented by the OA, 0A, *1 space
they define three subspaces of the total configuration space. The method of
solution consists of integrating the coupled EqL (110) over the range of RA, '

r1 , which, together with -y, spans the A arrangement-channel subspace. This
integration is performed by dividing the RA, rA subspace into regions, as was
done in the collinear case, and usine appropriate variables and basis sets in
each region (Schatz and Kuppermann, 1976b). We thereby get, in each region,
a set of coupled ordinary differential equations that can be integrated nu-
merically by the use of an appropriate efficient algorithm, such as that of
Gordon (1969) or Light and Walker (1976). This procedure generates a set of
linearly independent wave functions * -Z'(R,, ri') that span the A arrange-
ment-channel subspace, but do not cover the entire configuration space. We
similarly generate wave functions (R,, r,) and R.,1 r.e) that span
the v and K- arrangement-channel subspaces. These A. v, and K solutions
overlap on the X n,, ,., and irA half-planes, but have in general different ,. -

values on those surfaces. In order to generate solutions of the Schr6diniger
equation for a given J and Mj, which are everywhere continuous and smooth,
we take linear combinations of the *4A in the A arrangement-channel
subspace. of the eV4,' in the v subspace and of the 0.1" in the K subspace and
impose on these three different sets of linear combinations the conditions
that they be continuous on the xA,, x,., and X,1 half-planes and that their

6
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derivatives normal to these half-planes also be continuous. In this manner,
we generate solutions of the Schr6dinger equation at a given energy A that
are also eigenfunctions of J., and J,. corresponding to the quantum numbers
J and Mj, respectively, and that are everywhere smoothly continuous. An
examination of the asymptotic behavior of these solutions, as described in
Section IILD. furnishes the desired reactance and scattering matrices. From
these, the scattering amplitudes and cross sections are obtained, as described
in Sections IILE and IIF.

H. RsuL Ka H + H2

The only system for which accurate 3-PD quantum mechanical reactive
scattering cross-section calculations have been performed thus far is the
H + H2 system. Such calculations have been done independently by three
groups, using three different methods. At Caltech, we have performed such
calculations (Kuppermann and Schatz, 1975: Schatz and Kuppermann,
1976c) using the methodology described in Section II.G. At the University
of Texas. Elkowitz and Wyatt (1975a, b) used a natural collision coordinate
method and rotationally adiabatic basis functions. Both groups used the
Porter-Karplus H3 surface (Porter and Karplus. 1964). The Caltech group
expanded it in Legendre polynomials of 7A. using enough terms for con- 7
vergence of the results to be achieved. The Texas group cast the surface in a

mathematical form, in terms of natural collision coordinates, convenient
for the calculations. As a result, the two surfaces as actually used are not quite
the same, differing nonnegligibly from one another in the saddle-point
region. The Caltech group used sufficient vibrational basis functions in the
calculation to achieve convergence of the results to within about 5 o. This
required between four and six vibrational basis functions. The third group,
at Chicago (Walker et aL., 1978), reported some preliminary results on the
Porter-Karplus and the SLTH (Truhlar and Horowitz. 1978) potential
energy surfaces. We will describe next some of the results of the Caltech
calculations, and make a partial comparison with the Texas results in
Section IILH,2. Unprimed quantum numbers will designate reagents and
primed ones products, the opposite convention from that of Sections TILE
and IV,F.

i. Partial- Wave Reaction Probabilities

In Fig. 34a we display, as a function of the total angular momentum
quantum number J, and for several total energies E. the distinguishable- 0
atom reaction probability Pjoo0 -0 , from the v = 0. j - 0. mj = 0 state of
the reagents to the v' - 0,f - I state of the products, summed over all final
m;, which is the same as the opacity function of Eq. (96) for the 00 -, 01
reactive transition. This figure indicates that such opacity function has a
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Fig. 34. Reaction probabilities for distingluishable-stont three-dimmlsionial H + H2
CoiliSsOM (a) Reaction probabilities/ oe a-*, (summed over final md) as a function of J for total
enserlpes E - 0.50. US5. 0.60. 0.65. and 0.70 eV. (b) 2./+ I times thesn probabilities. The scale
ractors ror the farst two energies are the numbers by which the probabi lities were multiplied
before being plotted.
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maximum value at a low J and decreases rapidly with increasing J, beyond
that maximum. If we define J,,. as the lowest value of J for which Pj ,..y has 40
decreased to less than I 0o of its maximum value, then J,,,, is 4 at 0.3 eV and
increases monotonically to about 10 at 0.7 eV. The contribution of this opacity
function to the degeneracy-averaged integral reaction cross section is weighted
by the factor (2.1 + I) as indicated in Eq, (95). Figure 34b displays the product
(2J + I)P j.oo-ot as a function of J. The partial wave that gives the largest
contribution to Qo11o-0n varies from J - I at E = 0.3 eV to J = 4 at 0.7 eV.
We see that over this energy range 12 partial waves suffice to obtain integral
reaction cross sections with an accuracy of a few percent or better. It is this
property that will also be responsible for the accuracy of the angular-
momentum decoupling approximation described in Section III.H,10.

2. Integral Reaction Cross Sections

In Fig. 35 we display, as a function of the total energy E, several distinguish-
able-atom integral reaction cross sections Q I, which are the degeneracy-
averaged cross sections of Eq. (95) summed over all final cj' states of the
products. The curves labeled SK are the Schatz and Kuppermann (1976c)
quantum mechanical results, those labeled KPS are the Karplus et al. (1965)
quasi-classical trajectory calculations, and the EW curves are the quantum
mechanical curves of Elkowitz and Wyatt (1975a). The best agreement is
between the Q0o(SK) and Qo,(SK) curves and the corresponding quasi-
classical ones. Below the classical threshold we observe characteristic
tunneling behavior in the SK quantum results, which will be discussed in the
following section.

Agreement between the SK curves and the corresponding EW curves is not
as good as one would have expected. considering that both calculations were
nominally done on the same potential energy surface and that both employed
accurate methods and extended vibration-rotation basis sets. Part of this
lack of complete agreement was due to a different proportionality factor in
the expression for the cross sections (R. E. Wyatt, private communication).
After that difference is eliminated, the difference between the SK and EW 0

QAo- 01 (antisymmetrized) values in the energy range 0.6-0.7 eV is about
, In addition. the EW Qo /QA product rotational population

ratio at E - 0.70 eV is 0.61, whereas the SK one is 0.25. Considerable effort
was devoted to identifying the causes of these differences, since these are the
only two exact, detailed 3-PD reactive scattering calculations published so
far. The conclusions reached are that they are mainly due to two causes. One
is that the EW representation of the Porter-Karplus surface differs non-
negligibly from the surface itself. To correct for this difference, J. P. Dwyer
and A. Kuppermann (unpublished results, 1977) made calculations using
exactly the surface that EW used, for J - 0 and E - 0.60 eV. The resulting
reaction probabilities were closer to the corresponding EWs than previously,
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Fig. t 3. Comparison ofH + H2 3-PD reactive intepal ou sections as a unction of the
total energy E and inilial relative translational energy 4O for several calculations. The Q:, (KPS)
forj -. I, and 2 are the quasi-classica results of Karplus. Porter. and Shama (dashed lines)X
while Q04 (EW) is the analogous total reaction cross section obtained by Elkowitz and Wyatt
(squares). The Schatz and Kupperman. results are connected by solid lines and labeled Q', (SK)
withj - 0. 1. The arrows below the upper abscissa indicate the energies at which the ground
vional suae product rotational levels having the j values indicated become enericafly
accessble.

but about one-halr of the difference still persisted. This is assumed to be due
to lack of complete convergence of the EW calculation at some E and J
(Wyatt' 1979).

3. Tnaeimg Effects
The deviation between the SK and KPS Q00 and Q0o, curves of Fig. 35

around E - 0.58 eV is similar to the corresponding deviation for the collinear
reaction where, as described in Section ILF,2, a streamline of probability
current-density analysis has shown ineqwvocally the presence of large

,t
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tunneling contributions. These differences, although small, affect in a signi-
ficant way the corresponding thermal reaction rate constants. Karplus et al.
(1965) have computed such rate constants k(T) from their quasi-ctassical
trajectory cross sections. These can be converted to the para -. ortho rate
constants by multiplication by the ratio K,q(T)/[i + K,q(T)] where K,(T)
is the corresponding ortho .- para equilibrium constant at temperature T
obtained from the potential energy surface using quantum statistical mech-
anics (Schatz and Kuppermann, 1976c). In Fig. 36 we present Arrhenius
plots of the SK and KPS para - ortho rate constants kp.(T) over the
temperature range 100-600 K permitted by the available 3-PD quantum
cross sections. Also presented is the corresponding transition-state theory
curve (TST) with unit transmission coefficient.
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At 600 K the quasi-classical kp.,. differs from the quantum one by only 7
This close agreement is due to the agreement between the corresponding
Q. and Q01, of Fig. 35, at energies above the quasi-classical threshold. How-
ever, because of tunneling effects, the quantum kp. is 3.3 times larger than
the quasi-classical one at 300 K, and 18 times larger at 200 K. The significant
nonlinearity in the quantum curve of Fig. 36 is also apparently related to
tunneling, although as described in Section II,F,2. tunneling in the collinear
H + H2 reaction can make significant contributions to the rate constant even
at 1000 K where the collinear reaction-rate constant Arrhenius plot is quite
linear.

The TST rate constant deviates from the quantum rate constant even more
than the quasi-classical one with k,. (SK)/k,.o (TST) being 20 at 300 K and
427 at 200 K. Part of this error is due to the neglect of tunneling corrections
(Kuppermann, 1979).

4. Differential Cross Sections

In Fig. 37 we present the properly antisymmetrized differential cross
sections #Aooo-e3. as a function of the reactive scattering angle OR between
H-H 2 final wave-number vector and the H2-H initial wave-number vector,
for E - 0.6 eV and m; having all possible values. We see that only for the
m; = 0 polarization quantum number is there a peak in the backward
direction. As Imj increases, the reactive scattering shifts to a more forward
direction, with the cross sections peaking at 0% - 139°, 11, and 1028 for
Imill - 1, 2, and 3, respectively. The tact that for m; -o 0 these differential %0

cross sections vanish at Ol = 0O and 1800 is a consequence of Eq. (91) as
explained in Section III.E. As can be seen, these differential cross sections
are smooth functions of OR, giving no indication of spurious oscillations.
This is a sensitive indication of the accuracy of the calculation, as also ex-
plained in Section IILE. In order to achieve it, special care was taken to
assure convergence of the scattering matrix amplitudes and phases at each
partial wave, as well as to include a sufficiently large number of partial waves
in the expansion. Elkowitz and Wyatt (I 975ab) have not published differential
cross section& presumably because of the difficulty of achieving such con-
vergence. In any event, the SK results represent the only accurate quantum
mechanical reactive differential cross sections published so far.

In Fig. 38 we have plotted the distinguishable atom nonreactive differential
cross sections 0"0_0o.j as a function of the scattering angle (between the
H2-H final and initial wave-number vectors) for E - J eV and m; having
all possible values. We see that significant cross sections occur at all m; and
at all scattering angles not too close, for m; ;' 0. to 00 or 1800. This behavior
of the nonreactive cross sections contrasts with that of the antisymmetrized
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Ftg. 37. Differential cross section .oo.s for the 3-PD H + H, " H2 + H reaction as
fLnction of the reactive scattering angle lt for E - 0.6 eV and all possible m;.. The curve labeled
sum is the sum of all seven cross sections and is equal to the deeneracy-averaged e-03.
Scale factors have meaningp analogous to those of Fig. 34.

one in Fig. 37, which according to Eq. (105) is proportional to the reactive
cross section. The latter has significant contributions only for m; = 0 and
for Ol close to 1800. The reason for this difference in behavior is the fact that
for this system the potential energy function has a strong minimum, at the
energies considered, in the collinear direction, as indicated in Fig. 31. As a
result for reactive collisions to occur, the reagents must approach almost
collinearly and the products recede from each other almost collinearly. The
latter effect produces the backward-peaked reactive angular distribution.
In addition, a polarization propensity rule, which favors mj - 0 -, M =- 0
reactive transitions, results, and is 'irther discussed in the following subsec-
tion.
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Fi. 31. Differential nonreactive cross section 4.-ol,.; as a function of"scattering angle 8
for E - 0.6 eV and all possible m;. The curve lIbeled sum is the sum of all five cross sections and
is equal to the degeneracy-averaged 00_-0.

3. Polarization Propensty Ades

It can be seen from Fig. 37 that the maximum differential cross section for
the m, = 0 -. m- I reactive transitions is about one order of magnitude
smaller than that forO - Oand that it decreases by another order of magnitude
in going to the 0 ± 2 ones and an additional order of magnitude in going to
the 0 - ± 3 reactive transitions. Such effect does not exist for the nonreactive
transitions of Fig. 38. In addition, an analysis of the integral cross sections
over the energy range E - 0.30-0.70 eV for the Ojmj -- Oj'm; reactive transi-
tions indicates that the m; - mj = 0 cross section is typically 10-20 times
larger than any other with the same c'f and cj. In addition, for a given cjmj
and c' f this cross section is a decreasing function of I mi. By microscopic
reversibility, for given cj and cf min, it is a decreasing function of Imjj. This
indicates a significant reagent and product rotational angular momentum
polarization effect in the helicity representation.

*I
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Fi. 39. Influence of reagent projection quantum number mj (for j > 0) on the allowed
relative ori-ntauons of atom A with respect to diatom BC for zero-impact collisions: (a) m - 0

Sinitially . aat the rotational angular momentum vector is perpendicular to the direction of
relative motion: (b) m, > 0 initially so that the j vector lies on a cone about the relative motion
vector and makes an acute angle with it. In both (a) and (b) the rotation plane of the diatom is
indicated by the smaller ellipse.

These empirical propensity rules can be rationalized on the basis of the
collinear-type characteristics of the 3-D potential energy functiun for the
H + H 2 system. Indeed, the rotational wave function of the diatom at large dis-
tances from the atom is Yj,,(7. t) before the collision and Ys;,.,.
after the collision. These functions have nodal lines along the 7A. or TA equal
to 0 or x directions favored by the potential, unless the polarization quantum
numbers vanish. This implies that the mi = mj = 0 reaction cross sections
should be larger than all others, in agreement with the calculation
results. This can also be visualized classically by recalling that initially -.0
Q -m s, so that m, - 0 implies (for nonzero j) that the axis of rotation is
perpendicular to the direction of approach. as schematically indicated in
Fig. 39. In this situation, twice during each diatom rotation the three atoms

•*'0
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go through a collinear configuration (for zero impact parameter). For
mj 0 0 no collinear configurations are sampled. After the collision, in; - CY
so that again only for mi = 0 can we have a postcollision collineai orientation.

As a consequence of this model, we would expect that integral reaction
cross sections for which mi = 0 or mj = 0 (but not both) should be signi-
ficantly larger than those for which neither of these helicity polarization
quantum numbers vanish. This is indeed the case (Schatz and Kuppermann,
1976c)

6. Reagent and Product Rotational State Distributions

The degeneracy-averaged integral reaction cross sections 0.-r for
c - c' = 0 depend both on the rotation states j of the reagents and f of the
products. In Figs. 40 and 41 we present surprisal-type plots of the product

0 t 2 3 4
II

"
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E GO*.60eV
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jai
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0 .0 1 T Q 5 ! o o
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• " I~~ri.40. Reactive depera'y-averaed integral cross sections Oo- for the H + H , 3.PD

exchange reaction divided by (2f + 1) x T.as a function of" the product rotational energy'

Er and rotational quantum number fat 0.60.eV total energy for initial rotational quantum
numbers j .- 0-4. A(E r) is a relative translational density of" states which for f 0 equals 1.

.j£

, . ... "-t - " ii I , b : " I : "
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rotational state distributions (Ben-Shaul es al. 1972ab; Levine and Kinsey,
1979). We see from Fig. 40 that at £ - 0.6 eV and for low j the plots for each
j are linear, and for the first four values ofj they have the same slope. For
j = 0 and E between 0.45 and 0.70 eV, Fig. 41 indicates a similar linear be-
havior, with the slopes of the surprisal plots depending on the total energy.
Therefore, surprisal parameters are a useful compact way of describing the
dependence of these reactive scattering cross sections on the rotational states
of the reagents and products.

7. Interference Effects between Direct and Exchange Processes

According to Eq. (104), we expect to see interference effects between the
nonreactive fN and reactive ft scattering amplitude contributions to the

*0

0I1 2 3 4
Io

* "- I0.70ev

.3

N % ,

4. W-I

0.

10000 I T00 0.10 L -15

1 4|. Reactive degeneracy-averaged integrl cros sections QO'@or for the H + H3
3-PD eachange reaction divided by (2f + I) x O(.') as a function of the product rotational
energy Er and rotational quantum number f at 0.45. 0:5. 0.55. 0.60. 0.65. and 0.70 eV totil
enerly. #(E) has the same meaning as in Fig. 40.
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fI. 42. Dilerential cross sections AO4.oq.,, (solid lines labeled A) and a"oo.oaz, (dashed

fines labeled N) as a function of the scattering angle for (a) m) - 0. (b) m; - _ I. and (C)
m- 2 at E - 4.70 eV, for the H + H ,3-PD exchang reaction.

para - para differential cross sections. This is displayed in Fig. 42 where we

plot, as a function of scattering angle, the nonreactive and antisymmetrized
differential cross sections cooo-o,. at E - 0.70 eV, ror m; assuming all of its

*O: possible values. The oscillations in the antisymmetrized curves are due to the
interference just mentioned. These oscillations are still present in the cor-

responding degeneracy-averaged differential cross section u.oo-o2, as dis-

played in Fig. 43 where, for comparison purposes, the reactive cross sectioniI
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Fig. 43. Degeneracy-averaged oi, o'oao1, and voo as a function ofscattering angle
Oat a total energy of 0.70 eV. corresponding to the state-to-state cross sections of Fig. 42.

0ro1t -o= is also shown. It is interesting to notice that these oscillations are
quite pronounced even at scattering angles between 600 and 80*, in which
range aoo.s0 is about two orders of magnitude smaller than oo-o2. Al-
though these indistinguishable-atom interference effects are known for the
scattering of identical atoms, such as in He-He collisions, it is somewhat
surprising that they should be so pronounced for the highly anisotropic
reactive system considered, where averagings associated with partial-wave
sums and reagent and product orientations might be expected to produce a
significant attenuation of these oscillations.

Sr -0 .
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8. Dy"uu Feshach Resonnces
In Fig. 44 we display, as a function of total energy E and relative reagent

translational energy E, the distinguishable-atom reaction probabilities
POe-e and Poo-I for J - 0 (solic curves labeled 3D) (Schatz and Kupper-
mann, 1975). These are the sums of the 3-PD reaction probabilities
P~eoR-or,,, and P.Io-t,.., over all final product f and m. The other curves,
labeled ID and 2D, are corresponding curves for collinear (I-PD) and co-
planar (2-PD) reactions, and are given for comparison purposes. The
potential energy surface used was that of Porter and Karplus (1964). The
oscillation centered at a total energy of 0.97 eV in the 3D curve is due to a
dynamic Feshbach resonance, and involves a quantum interference between
a direct reaction mechanism and a compound state one, in which the energy
is temporarily trapped in internal degrees of freedom of the system (Schatz
and Kuppermann, 1973, 1975).

The nature of these degrees of freedom was discussed in Section JUF,3.
We see that an energy shift of about 0.05 eV occurs in the position of the
resonance in going from I-PD to 2-PD and again in going from 2-PD to
3-PD. This shift can be rationalized as arising from the zero-point energy of
about 0.06 eV of the bending mode of the saddle-point configuration of the 9
potential energy surface. In the coplanar case the shift is approximately
equal to that zero-point energy. In the 3-PD case, this bending mode is
doubly degenerate, so that an additional amount of zero-point energy is
required. This suggests how the position of I-PD resonances can be used to
predict where the 3-PD resonances should lie for collinearly dominated
reactions.

Estimates of the energy dependence of the integral cross section for the
reaction from the ground rotational-vibrational state of the reagent to the
first vibrationally excited state of the product, for 3-PD collisions, is similar
tO that of the corresponding J - 0 reaction probability, depicted in the
lower panel of Fig. 44, and has a peak value of 0.05 bohr'. Therefore, the
partial-wave and product rotational state sums involved in the calculation

of this cross section do not wash out the resonances obtained for the collinear %0

system, at least for the present collinearly dominated reaction. We therefore
expect this resonance to exist in the real world.

Both coplanar and 3-PD calculations indicate that the resonance has a
significant effect only on the J - 0-7 partial waves, whereas away from the
resomance but at energies close to it nonnegligible reaction probabilities
occur for the wider J - 0-17 range. Therefore, at the resonance energy, one
should expect oscillations to develop in the angular dependence of the re-
active differential cross section. The reason is that as pointed out in Section
1IE, the individual partial-wave contributions to the scattering amplitudes
are highly oscillatory in nature, and fairly slight calculational inaccuracies

6
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in the elements of the scattering matrix for one partial wave are usually
enough to upset the delicate balance between partial waves, which leads to
nonoscillatory differential cross sections, thereby resulting in strong spurious
oscillations. It is reasonable to expect that the presence of resonances in some
of the partial waves that contribute significantly to the cross sections should
have a similar effect, as is experimentally observed for inelastic electron
scattering (Erhardt, 1969). This argument, developed for distinguishable- r
atom cross sections. retains its validity for indistinguishable-atom pan -.

ortho channels.

9. Relation between Colinear, Coplanar, and Three-Dimensional Results

Sinc the H + H2 3-PD reaction is collinearly dominated, i.e., V(R, r, y)
has a deep minimum with respect to 7 at =0, , it might be expected that
the results for the collinear and 3-PD systems are related. Furthermore, since
both the coplanar (2-PD) and 3-PD systems feel the entire V(R, r, y) potential
energy function, they should also be related. For these reasons, we now
compare the results of these three calculations. This is done in Fig. 45, where
we plot. as a function of total energy E and translational energy E0 , the total
reaction probabilities from the ground vibrational (and rotational, for the
2-PD and 3-PD cases) state of the reagents to all accessible states of the pro-
ducts (for J - 0 in the 2-PD and 3-PD cases). The figure indicates a sur-
prisingly similar energy dependence over several orders of magnitude of
these probabilities. There are, however, two important differences, both of
which provide significant insight into the reactive collision dynamics. First,
an energy shift approximately equal to the zero-point energy of the bending
mode of the saddle-point region occurs, as it did for the resonance positions,
in going from I-PD to 2-PD to 3-PD. This indicates that the bending mode
zero-point energy is not available to the reactive process. The second differ-
ence between the 1-PD, 2-PD, and 3-PD results lies in the probabilities at
the first maximum, which occurs in the upper panel of Fig. 44. The collinear
probability peaks near unity, whereas that of the coplanar levels off at about
0.6, and the 3-PD one roughly at 0.45. This behavior can be qualitatively
understood if it is assumed that in both the 2-PD and 3-PD cases the prob-
ability of reaction, considered as a function of y. is unity for 0 : 5 W and
126 s 180" and vanishes otherwise (Schatz and Kuppermann. 1976a.c).
This indicates that the 2-PD and 3-PD orientation dependence is probably
quite similar with primarily dimensionality considerations responsible for ' I
the difference in reaction probabilities.

The 2-PD and 3-PD differential cross sections Oooo0 are plotted in Fig.
46, the corresponding ordinate scales being those at the right and the left,
respectively. These scales were adjusted to bring the corresponding points
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Fig. 45. One-. two-. and three-dimensional total reaction probabilities ea (I DX. Poa

* (2D. J - 0). and Pol (3D. J - 0). summed over all final states, as a function of the total energy
* E and initial relatiie translaional energy 4. for the H + H2 exchange reaction.0

* into approximate agreement at Olt - 180*. The energy for the 2-PD curve is
0.55 eV, and that of the 3-PD curve. 0.60 eV so as to include the energy shift
due to the bending energy. These two cross sections show a remarkably
similar angular dependence over the entire range of scattering angles. A
similar comparison at other energies in the 0.3-0.7 eV range leads to comn-
parable agreement This suggests that the 2-PD and 3-PD dynamics are
quite similar and conversion of 2-PD to 3-PD results could prove to be an
accurate approximate technique.
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i& 41L Two. and three-dimensional cross sections a-ol 12D) and 4-o, (3D) as a
function of ractive scattering snle Og for the H + H3 exchange reaction. The 3D cross section
(solid curve), at 0.60.eV total ene y. is referenced to the left-side ordinate scale, whereas the 2D
result (circes) at 05 eV is rehrenced to the right-side scale.

10. Angular Momentum Decoupling Approximations
To perform 3-PD reactive-scattering quantum mechanical calculations

requires a very considerable amount of computational effort. For example,

for the H + H2 system, which is ideally suited for such calculations, the
amount of computation time on an IBM 370/158, for J a 4, was approxi-
mately I hr per value of J per energy, and the number of values of J to achieve
convergence at E = 0.6 eV was about 15 for reactive cross sections and 35 for
nonreactive inelatic cross sections. For other systems, involving more

closely spaced vibrational-rotational levels, the number of coupled channels
involved can be considerably larger, and the amount of computation time
required increases approximately with the cube of such a number. Therefore,
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except for a few carefully chosen benchmark systems, only approximate
methods will be applicable using present-day computers or those likely to
be developed within the next decade. As a result, it is important to test the
validity of such approximate methods for the systems for which accurate I
calculations have been performed. So far, this includes only the H + H
system.

One approximate method that can be conceived of is the 2-PD to 3-PD
conversion mentioned in the previous section. Another is based on the re-
marks about Eq. (I I0), made after Eq. (112). For reactive systems, the po-
tential coupling terms Vj, a,, in the former equation may be expected to be
more important than the tumbling angular-momentum centrifugal coupling
terms r'

6
dA*1* In order to test this assumption, calculations were made in

which the latter terms were dropped (Kuppermann et al., 1977). This ap.
proximation was implemented in two forms. In one, when linearly combining
the -arrangement channel-wave functions eiX-, generated by the solutions
of the Qfi-decoupled approximation to Eq. ( 10), in order to obtain solutions
to the Schr6dinger equation that are everywhere smoothly continuous, all
1A terms were included. This is called the proper decoupling scheme, and
labeled PD. In the other, labeled SD for simple decoupling, only solutions of

0 equal (I were included in this smooth matching procedure. 4
In Figs. 47 and 48, we display the results of such calculations for reactive

and nonreactive transitions. In both figures, the solid lines are the results of
exact 3-PD calculations, the squares refer to the PD scheme, and the tri-
angles to the SD scheme. In Fig. 47, the total energy was 0.6 eV, the open
symbols represent the approximate nonreactive probabilities and the closed
symbols represent the approximate reactive probabilities, all for the 000-. 020
distinguishable-atom process. It can be seen that the PD scheme is an
excellent one for the reactive process, but rather poor for the nonreactive
process. In Fig. 48, the distinguishable-atom integral reaction cross sections
for the 000 -. 020 (closed symbols) and 000 -- 010 (open symbols) are given
as a function of E and E. Again it can be seen that the PD approximation is
excellent, agreeing with the exact results to within 7.5 % over the range of total
energy of 0.45-0.65 eV. However, for reactive processes for which the condi-
tion m; - mj - 0 is not fulfilled, the PD and SD probabilities can be in error by
one or more orders of magnitude. For example, for the fl-conserving 01-1
-. 011 reactive process at E - 0.6 eV and J - 5, the ratio of the PD prob-
ability to the accurate, one is 0.47 x 10- 1, and for the non-fl-conserving
000 -. 011 reactive process this ratio is 0.041. On the other hand, as seen in
Section I,,5, the reactive transitions vjmj -. v'fm for which m - mj - 0
are an order of magnitude or more intense than the reactive ones. Conse-
quently, the corresponding summed and averaged integral reaction cross
sections Qo'l..or are still reasonably accurate for low j and f.

M0
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tFig. 47. Distintuishable-stom probabilities for the 000 --020 trasition as a function of i

total anglular m ,matum quantum number J ror n. ive and nonreactive 3D collisions of H
with H,2 t a total energy of"0C6 eV. The solid curves are accurate quantum calculations. The L
tmngles correspond to the simple decoupling (SO) angular momentum scheme and the squares-to the prer deoupling(P) one.

Although for the nonreactive state-to-state jm - fm transitions these '
-ecoupling schemae , as shown in Fig. 47, give poor reults the correspond-

ind summed and avenr ged integral cr sections are in very good alrement
with the exact cacudatioMn indicating that fr a givenj these approximations

transfer nonreactive flux from m; # 0 to mj - .
We conclude that for the H + H2 system, these Q-angular momentum

decoupling schemes are quite accurate approximate ways of calculating
reactive and nonreactive summed and averaged integral reaction cross ., p
sections. In view of the large saving in computer time these approximations
entail, they should permit approximate 3-PD quantum mechanical reactive
scattering calculations to be performed for systems involving large numbers.
of channels. A first calculation of this type was recently performed by
Redmon and Wyatt (1979) for the F + H2 - FH + H reaction.
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IV. Geoni System ad Procesm

In Delves' scaled coordinates, the rotational invariance properties given

by Eqs. (13) and (64) can be generalized to N-atom 3-PD systems. Therefore.
the physical ideas and computational methodology developed for triatomic
systems can be conceptually generalized to polyatomic systems without
difficulty. This includes electronically nonadiabatic reactions, which can be
described by a straightforward generalization of the formalism used in Sec-
tion lil, as well as dissociative and recombinative processes, as considered . -

in Section ILL. In the latter case, the symmetrized hyperspherical coordinates
introduced in Section IIIB for triatomic systems and their generalization for
polyatomic systems, are particularly useful. The difficulties in tackling such
systems and processes of higher dimensionality and complexity is therefore
not conceptual, but practical The number of coupled-channel equations
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needed becomes rapidly excessive not only for present-generation computers,
but also for those of the imaginable future. However, once sufficiently ac-
curate benchmark calculations are available for simple systems, they can
be used to test the validity of the approximate reactive scattering methods
currently in existence or being developed. The hope for the future is that
reliable and highly efficient methods of this kind can be found and used with
the formalism just outlined to provide a theoretical description and interpre-
tation of such more complex systems and processes.

V. Cmcluihe

A detailed formulation of the quantum mechanical exchange reaction
problem between an atom and a diatomic molecule has led to the develop-
ment of accurate methods for obtaining ab initio cross sections for such reac-
tions, and to their implementation for the H + H2 three-dimensional system.
The results of such calculations have provided a detailed understanding of the
dynamics of this reaction and to the prediction of the existence of polarization
propensity rules for collinearly dominated reactions as well as of the existence
of a dynamic Feshbach resonance in this system. An angular momentum
decoupling approximate scheme for solving the Schr6dinger equation for
this reaction has been tested and shown to lead to accurate results. The
formalism has been extended to dissociative and many-body recombinative
processes as well as to electronically non-adiabatic ones. This field is in its
infancy, and substantial progress is expected in the future, leading to the
development of reliable approximate methods capable of describing more
complex systems and processes.
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FEW BODY MOLECULAR COLLISIONS: THEORETICAL
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Abstract: This paper discusses the theory of atom-diatom exchange collisions
without breakup. Methods involving a direct solution of the Schrbdinger
equation by accurate and approximate techniques are described. The main
focus is on reactions on single electronically adiabatic potential energy
surfaces, with some consideration given to two electronic state calculations.

1. Introduction

The only accurate three-dimensional (3D) quantum mechanical calculations
of the cross sections of bimolecular chemical reactions performed so far have
utilized coupled-channel techniques for solving the SchrLdinger equation in con-
figuration space. We will describe the nature of such methods as well as
approximations derived from them. The paper by D. Micha, in this volume, will
include the use of transition operator methods for dealing with these problems,
including breakup processes. More comprehensive reviews have appeared
recently' - 3) or will appear soon. 4) Because of possible transferability to few-
body nuclear problems, methodology rather than results will be emphasized.

2. Electronically adiabatic expansion

In view of the interdisciplinary nature of this Conference, and the diversity
of nomenclature used by the different disciplines involved, we will first consider
a general formulation of the molecular scattering problem in order to introduce
the language and solution methodologies involved. Let us consider a general
molecular system and denote by r and R the complete sets of spatial electronic

and nuclear coordinates, respectively, needed to position these particles. We
write the hamiltonian of the system as

H(r,R) - TC (r) + Tn(,) + V(r,R), (1)

where Te(r) and Tn(R) are the electronic and nuclear kinetic energy operators,

and V(r,R) denotes the coulombic interaction energy among all the molecular

electrons and nuclei. Spin-spin and spin-orbit interactions are assumed to be
small for the low atomic weight systems considered here and are omitted in Eq.
(1). They can be included a posteriori by perturbative techniques. In what

follows, electronic and nuclear spin appear only through the Pauli principle. We
now define an electronic hamiltonian by Le

e(r;R - T(r) + V(jR), (2)
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which differs from the total one of Eq. (1) only by the absence of the nuclear
kinetic energy ogerator Tn. The electronically adiabatic Born-Oppenheimer
wavefunctions 4be(r;R) are defined as the electronically bound eigenfunctions of
He which satisfy1 tll6Pauli principle for the electrons:

He~r,R)Oi(r;#) = Ed()(rR (3)

The symbol i specifies the complete set of quantum .pumbers needed to define the
electronic state of the system. The eigenvalues Eau(R) depend on that state and
on the positions of the nuclei and constitute the electronically adiabatic *

potential energy (hyper) surfaces. The nature and properties of these surfaces
and of their interactions determine the structural and dynamical properties of
bound and unbound molecular systems and distinguish them from nuclear and
elementary particle ones. The theoretical calculation of these surfaces is an
important objective of the field of quantum chemistry,2)but is outside the scope of
this review.

We now expand the electronic-nuclear wavefunction * r,R) in the Born-
Oppenheimer states:

(4)

The *n(R) are nuclear wavefunctions that are independent of the electronic coor-
dinate . Their determination can be achieved by replacement of this expansion
into the SchrOdinger equation, which leads to the coupled equations,

[Tn(R) + EadRJnR+(,i Jo + 2(otv~j~ *V 4~I

= *in(R) , (5)

where vn and pn are the total nuclear velocity and momentum operators, respect-
ively, Ind E - the total system energy. In this expression, the sum over i' couples
different electronically adiabatic states through the dependence of the Born-
Oppenheimer electronic wavefunctions 0(r;R) on the nuclear coordinates R.
The Born-Oppenheimer approximatrion "i obtained by assuming that tifes sum
can be neglected with respect to the other terms in Eq. (5):

where

H'(R) = Tn(R) + E ad(,) (7)

is the effective nuclear hamiltonian and 4,n is made to satisfy the Pauli principle
for the exchange of identical nuclei. In tas approximation, different electronic
states do not couple with one another. It breaks down in regions of nuclear con-
figuration space for which different potential energy surfaces approach one
another or at high enough nuclear kinetic energies for the coupling terms to be
non-negligible. Under these conditions, Eq. (5) rather than (6) must be used to
solve the nuclear motion problem, with as many electronic states i' included as
needed to appropriately describe the physical system under consideration.

4The central goal in the scattering theory of molecular collisions Is to
obtain solutions to Eqs. (6) and (7) that satisfy the appropriate nuclear motion
boundary conditions that characterize the physical process being considered.
The rest of this paper is devoted to this topic.
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3. The mapping of potential energy surfaces for triatomic systems

Consider a system of three nuclei Ax, A, AV
.and let R ,r be the position vectors indicated in the Ax

figure at the right. rx is the A, to A vector and
that from the center of mass GA of those two

particles to Ax. Vj is the angle in the 0 to v range G0
between those two vectors. Excluding the kinetic GA,,AK
energy of the center of mass of the triatomic __
system, the nuclear motion hamiltonian of A" rA

Eq. (7) is K V

(8)

where , and 1A . are appropriate reduced masses and V is the electronically

adiabatic potential energy surface E,". It is convenient to introduce the mass-
scaled coordinates s )

!X a., r = a..f. 5x ('., V/M,,qV (9)

in terms of which the nuclear hamiltonian becomes

H (R,)+ +V(R.,r. ,x) (10)

and
an = [m mVmln, + m, + mV)j (11)

is a mass that is unchanged if P or K coordinates are used instead of the X ones.
A A - P coordinate transformation is a rigid rotation in 6D configuration space.')
In order to map the Iotential energy surface V, we define a 3D subspace of this
configuration space by the spherical polar coordinates p, w, and yx where p and
W are defined by

2 a
= (Ri + rx)f

(12)

lox = 2 tan'(rx/Rx) 0 AWx sI

The hyperspherical distance p is the same in P and K coordinates, and the factor
2 in the expression for the hyperangle wx is chosen to establish a one-to-one
correspondence between internal configurations of the triatomic system
and points P(o, wx, x) of the map.')

A schematic map of a V = constant surface in this 3D space is given in Fig.
1, for a system in which the three diatomics A.A., AKA., and AA v are stable.
The three tubular regions along the axes labeled Z , Z V, Z,, represent those iso- 0

lated diatoms. For a system for which only one of those diatoms exists, such as
He + H, in its ground electronic state, only one such tube exists, as indicated
schematically for the equipotential surface of Fig. 2. It is a useful property of
the polar mapping described above that a p, wx,VX - p, wv, V. transformation is a

rigid rotation in this 3D space around the Yx cartesian axis of this map.
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ZX As+Aj9Ar

AN+AA.p C A+A/

Fig. 1. Equipotential surface for an A, A 7A Fig. 2. Equipotential surface for
triatomic system for which molecules A r an A_ AA triatomic system for

A ~a and AAare stable. which AOYis the only stable
v A 6 datomi molecule.

The nature of the passageway between the separated atom-diatom channels
in Fig. 1 or of the internal spacing between the two sheets of Mig. 2 guides the
choice of coordinates, basis functions, and theoretical approaches to obtaining
the scattering elgenfunctions of the hamlltomian of Eq. (10). A specific example
of such a map of V is given in Fig. 3 for the ground state of the H + H, system.?)
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The hatched enclosed area on the bottom of part (b) of that figure indicates
the relatively narrow classically accessible passageway at a total energy of
0. 6 eV (measured from the bottom of the isolated I2 ground electronic state well)
which connects the arrangement channels A + A A and A + A A An under-v & P P 0standing of this internal topography is of primary importance for the develop-
ment of practical accurate or approximate methods for solving the three-body
quantum mechanical rearrangement scattering problem.

4. Scattering formalism in body-fixed coordinates

A convenient set of coordinates in which to describe the scattering problem
is RX, 0, 'r'j y, where R>, rx,V have been previously defined, lx, x are
the Euler angles of in a laboratory-fixed frame, and is the angle between
the R., r plane and the Nx, z plane where z is a laboratory-fixed axis.

If the nuclear motion wavefunction is expanded in partial waves as

IVR,r) CjM (13)
JM

and the partial waves as

., , r., , , ID, (0"x 6 .%2*', O)Yj, *Xl, . *j a (R., r.) (14)

the distance-dependent functions wf can be shown to satisfy the coupled partial

differential equationsP)

tn), ax-, Wjj)L, .- + tsifxwxjjxfl x + tsx, fQX+ 1 Jl)fl+  
-.

+ z V Ev j (2 (15)

where

J'6')L (R r R! 1 j1 x >(jx + 1)1?'

2

tGX'GX*I'"A"~ ~~ = 2P [J(J  + 1) - 28.2 ,1t[ X(J + )L a) +i~i 1)t (16) -* ggjR, x) - -.... 8 x~x1nJ>J i+ 1) [JL(J1)2l+j(x, (6

S ~~ - .~j( +1- x 0x*to~jxj + 1)- GX( 0x 1)]1  (17)

VjJ (A,r,) x x j (Y.x, ,IVYj 0'(vxx). (18) .;.

The only terms that couple 0 , the quantum number of the component of total

S!
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angular momentum in the RX direction, are those in the tumbling motion opera- Al

tors X 1 which, for many exchange reactions, are small. Their neglect

leads to the angular momentum decoupling approximations described in Sec. 5.
Equation (15) may be solved numerically by expansion in local vibrational

eigenfunctions, with different coordinates used in different regions of Rx, r1X
configuration space. S) Natural collision coordinates (NCC can be used instead
of N, r .., *,I) as well as hindered rotor basis sets for that expansion. 0)

These NCC involve a translation coordinate, a vibration coordinate, and a bend-
ing angle between the r and r vectors. Integration of the coupled ordinary

differential equations resulting from Eq. (151 or their analogs in different tubular
regions of the 3D internal configuration space requires matching on appropriately
chosen separation surfaces between those regions such as planesa) or more
complicated surfaces. 10) Once smoothly continuous solutions of the nuclear
motion Schr/dinger equation, valid everywhere in configuration space, are
thereby determined, the scattering matrix is obtained and from it the desired
cross sections. '10) The Pauli principle for exchange of identical nuclei is
imposed by post-antisymmetrization techniques.

the only accurate quantum mechanical 3D exchange reaction calculations
performed so far are for the H + Bt system. Two of these calculations agree
quite well. ',") The third one6) gives slightly different transition probabilities
and integral cross sections, due in part to the use of a slightly different potential
energy surface and in part to incomplete convergence. Only one of these calcula-
tions8) was performed for sufficient partial waves to a sufficient degree of con-
vergence of both the magnitudes and the phases of the scattering matrix elements
to yield accurate angular distributions.

5. Approximate methods

The methods described above will probgbly be able to generate accurate
results for only a relatively small number of benchmark systems because of the
extensive amount of computation involved. Approximate methods for solving the
Schr~dlnger equation that do not introduce major distortions in the nature of the
results will play a central role in the future of chemical dynamics. A few of
these methods are discussed below.

5.1 ANGULAR MOMENTUM DECOUPLING APPROXIMATIONS

ts o, tl terms In Eq. (15), or their counter-

parts In formulations using other systems of coordinates are neglected. This
produces a high degree of decoupling of the equations, which greatly simplifies
the calculations. Further approximations in the angular momentum part of

".ta0 [see Eq. (16)) are usually also introduced. ,")

Wyatt and co-workers decoupled the component of total angular momentum
along a body-fixed axis which goes smoothly from reactants to products for the

H3: 1 ) and F + H,') systems. Kuppermann and co-workers's) decoupled the
component of total angular momentum on the relative approach vector in each of
the three arrangement channel regions of the H + H, system and matched the
solutions on separation planes. The state-to-state reactive scattering results
are accurate to better than 10% for H + H,. Kouri and co-workers") use the
infinite order-sudden approximation and a simple approach to transform from
one arrangement channel to another. The state-to-state cross sections may be
off by orders of magnitude, but average values are nevertheless quantitatively
correct.
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5.2 DISTORTED WAVE BORN APPROXIMATION

This approach was first introduced by Micha1 ') and applied since in several
versions by several workers. 1-21) If adiabatically distorted internal states are

* used, the method seems to work well at low collision energies. ,

5.3 SEMI-CLASSICAL AND CLASSICAL APPROXIMATIONS
The semi-classical methods were introduced by Miller") and by Marcus)

, in the early 1970's, and have been reviewed recently. 1,24) They work well for
collinear collisions, but do not furnish long-lived resonances without major
effort. To produce tunnelling effects, complex momentum or time is required.
They are difficult to apply to 3D reactive systems and their use has been limited.
The quasi-classical trajectory approximation, 25) on the other hand, has been
extensively used') and gives qualitatively correct results away from threshold.')

5.4 COLLINEAR APPROXIMATION3)

By confining th three atoms to a space-fixed straight line, configuration
space is reduced from six-dimensional to two-dimensionaL For "collinearly
dominated" potential energy surfaces (i. e., those that have a pronounced mini-
mum for collinear configurations), this approach gives the correct qualitative
dependence of reaction probabilities on reagent energy.$) It also serves as a
testing ground for approximate methods for solving two-dimensional problems,
which can then be extended to six-dimensional ones.

6. Calculations for systems leading to changes in electronic state

* In chemiluminescent reactions and, in many cases, ion-molecule reactions,
the products can be on a different electronic potential energy surface than the
reagents, implying a breakdown of the Born-Oppenheimer approximation. In
order to perform calculations on such systems, at least two potential energy sur-
faces and their couplings must be used. This has been done for a few model
collinear systems, among which are the Ba + N2O - BaO* + N2,,'2 IK* + H2 -
Hq+ H,21) and Ar+ H. - ArH+ + H28) reactions. The position of the seam
between the surfaces greatly influences the probability of forming excited state -.'
products. "6)

This work was supported in part by a contract (No. F49620-79-C-0187)
from the U. S. Air Force Office of Scientific Research.
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